mirror of
https://github.com/LCPQ/quantum_package
synced 2024-12-27 06:43:48 +01:00
.. | ||
.gitignore | ||
angular_integration.irp.f | ||
constants.include.F | ||
fortran_mmap.c | ||
integration.irp.f | ||
LinearAlgebra.irp.f | ||
map_functions.irp.f | ||
map_module.f90 | ||
mmap.f90 | ||
need.irp.f | ||
NEEDED_CHILDREN_MODULES | ||
one_e_integration.irp.f | ||
progress.irp.f | ||
README.rst | ||
sort.irp.f | ||
transpose.irp.f | ||
tree_dependency.png | ||
util.irp.f |
============ Utils Module ============ Contains general purpose utilities. Documentation ============= .. Do not edit this section It was auto-generated .. by the `update_README.py` script. `a_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L252>`_ Undocumented `add_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L306>`_ Add two polynomials D(t) =! D(t) +( B(t)+C(t)) `add_poly_multiply <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L334>`_ Add a polynomial multiplied by a constant D(t) =! D(t) +( cst * B(t)) `align_double <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L48>`_ Compute 1st dimension such that it is aligned for vectorization. `apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L320>`_ Apply the rotation found by find_rotation `approx_dble <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L371>`_ Undocumented `b_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L257>`_ Undocumented `binom <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L31>`_ Binomial coefficients `binom_func <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L1>`_ .. math :: .br \frac{i!}{j!(i-j)!} .br `binom_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L32>`_ Binomial coefficients `dble_fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L136>`_ Undocumented `dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L153>`_ n!! `dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L197>`_ n!! `dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L231>`_ n!! `ddfact2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L243>`_ Undocumented `dset_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_216#L27>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `dset_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L94>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `dsort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L339>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `dtranspose <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/transpose.irp.f#L41>`_ Transpose input matrix A into output matrix B `erf0 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L105>`_ Undocumented `f_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L408>`_ function that calculates the following integral \int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx `fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L63>`_ n! `fact_inv <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L123>`_ 1/n! `find_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L301>`_ Find A.C = B `gammln <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L271>`_ Undocumented `gammp <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L133>`_ Undocumented `gaussian_product <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L184>`_ Gaussian product in 1D. e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} `gaussian_product_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L226>`_ Gaussian product in 1D. e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} `gcf <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L211>`_ Undocumented `get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L247>`_ Find C = A^-1 `give_explicit_poly_and_gaussian <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L46>`_ Transforms the product of (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) into fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 ) * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) `give_explicit_poly_and_gaussian_double <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L122>`_ Transforms the product of (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) exp(-(r-Nucl_center)^2 gama .br into fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 ) * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) `give_explicit_poly_and_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L1>`_ Transform the product of (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) into fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2) `gser <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L167>`_ Undocumented `heap_dsort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L210>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L273>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `heap_i2sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L744>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L807>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `heap_i8sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L566>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L629>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `heap_isort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L388>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_isort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L451>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `heap_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L32>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `heap_sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L95>`_ Sort array x(isize) using the heap sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `hermite <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L540>`_ Hermite polynomial `i2radix_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_452#L327>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `i2set_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_216#L102>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `i2set_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L271>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `i2sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L873>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `i8radix_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_452#L165>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `i8radix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_452#L651>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `i8set_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_216#L77>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `i8set_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L212>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `i8sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L695>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_dsort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L180>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L61>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `insertion_i2sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L714>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L238>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `insertion_i8sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L536>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L179>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `insertion_isort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L358>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_isort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L120>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `insertion_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L2>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `insertion_sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L2>`_ Sort array x(isize) using the insertion sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. This is a version for very large arrays where the indices need to be in integer*8 format `inv_int <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L278>`_ 1/i `iradix_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_452#L3>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `iradix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_452#L489>`_ Sort integer array x(isize) using the radix sort algorithm. iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. iradix should be -1 in input. `iset_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_216#L52>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `iset_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L153>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `isort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L517>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L399>`_ Diagonalize matrix H .br H is untouched between input and ouptut .br eigevalues(i) = ith lowest eigenvalue of the H matrix .br eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector .br `lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L462>`_ Diagonalize matrix H .br H is untouched between input and ouptut .br eigevalues(i) = ith lowest eigenvalue of the H matrix .br eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector .br `lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L332>`_ Diagonalize matrix H .br H is untouched between input and ouptut .br eigevalues(i) = ith lowest eigenvalue of the H matrix .br eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector .br `lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L528>`_ Diagonalize matrix H .br H is untouched between input and ouptut .br eigevalues(i) = ith lowest eigenvalue of the H matrix .br eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector .br `logfact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L91>`_ n! `lowercase <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L395>`_ Transform to lower case `map_load_from_disk <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/map_functions.irp.f#L70>`_ Undocumented `map_save_to_disk <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/map_functions.irp.f#L1>`_ Undocumented `multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L264>`_ Multiply two polynomials D(t) =! D(t) +( B(t)*C(t)) `normalize <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L348>`_ Normalizes vector u u is expected to be aligned in memory. `nproc <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L304>`_ Number of current OpenMP threads `ortho_canonical <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L45>`_ Compute C_new=C_old.U.s^-1/2 canonical orthogonalization. .br overlap : overlap matrix .br LDA : leftmost dimension of overlap array .br N : Overlap matrix is NxN (array is (LDA,N) ) .br C : Coefficients of the vectors to orthogonalize. On exit, orthogonal vectors .br LDC : leftmost dimension of C .br m : Coefficients matrix is MxN, ( array is (LDC,N) ) .br `ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L162>`_ Compute C_new=C_old.S^-1/2 orthogonalization. .br overlap : overlap matrix .br LDA : leftmost dimension of overlap array .br N : Overlap matrix is NxN (array is (LDA,N) ) .br C : Coefficients of the vectors to orthogonalize. On exit, orthogonal vectors .br LDC : leftmost dimension of C .br m : Coefficients matrix is MxN, ( array is (LDC,N) ) .br `ortho_qr <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L128>`_ Orthogonalization using Q.R factorization .br A : matrix to orthogonalize .br LDA : leftmost dimension of A .br n : Number of rows of A .br m : Number of columns of A .br `overlap_a_b_c <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L35>`_ Undocumented `overlap_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L1>`_ .. math:: .br \sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx .br `overlap_gaussian_xyz <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L113>`_ .. math:: .br S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\ S = S_x S_y S_z .br `overlap_x_abs <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L175>`_ .. math :: .br \int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx .br `progress_active <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L29>`_ Current status for displaying progress bars. Global variable. `progress_bar <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L27>`_ Current status for displaying progress bars. Global variable. `progress_timeout <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L28>`_ Current status for displaying progress bars. Global variable. `progress_title <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L31>`_ Current status for displaying progress bars. Global variable. `progress_value <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L30>`_ Current status for displaying progress bars. Global variable. `recentered_poly2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L363>`_ Recenter two polynomials `rint <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L436>`_ .. math:: .br \int_0^1 dx \exp(-p x^2) x^n .br `rint1 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L596>`_ Standard version of rint `rint_large_n <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L565>`_ Version of rint for large values of n `rint_sum <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L484>`_ Needed for the calculation of two-electron integrals. `rinteg <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L47>`_ Undocumented `rintgauss <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L31>`_ Undocumented `run_progress <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L45>`_ Display a progress bar with documentation of what is happening `sabpartial <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L2>`_ Undocumented `set_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_216#L2>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. `set_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_283#L35>`_ array A has already been sorted, and iorder has contains the new order of elements of A. This subroutine changes the order of x to match the new order of A. This is a version for very large arrays where the indices need to be in integer*8 format `set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L585>`_ Undocumented `sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_184#L161>`_ Sort array x(isize). iorder in input should be (1,2,3,...,isize), and in output contains the new order of the elements. `start_progress <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L1>`_ Starts the progress bar `stop_progress <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L19>`_ Stop the progress bar `svd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L1>`_ Compute A = U.D.Vt .br LDx : leftmost dimension of x .br Dimsneion of A is m x n .br `transpose <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/transpose.irp.f#L2>`_ Transpose input matrix A into output matrix B `u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L334>`_ Compute <u|u> `u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L320>`_ Compute <u|v> `wall_time <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L289>`_ The equivalent of cpu_time, but for the wall time. `write_git_log <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L264>`_ Write the last git commit in file iunit.