quantum_package/src/Utils/README.rst

798 lines
30 KiB
ReStructuredText

============
Utils Module
============
Contains general purpose utilities.
Documentation
=============
.. Do not edit this section It was auto-generated
.. by the `update_README.py` script.
`a_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L251>`_
Undocumented
`add_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L302>`_
Add two polynomials
D(t) =! D(t) +( B(t)+C(t))
`add_poly_multiply <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L330>`_
Add a polynomial multiplied by a constant
D(t) =! D(t) +( cst * B(t))
`apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L367>`_
Apply the rotation found by find_rotation
`approx_dble <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L340>`_
Undocumented
`b_coef <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L256>`_
Undocumented
`binom <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L31>`_
Binomial coefficients
`binom_func <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L1>`_
.. math ::
.br
\frac{i!}{j!(i-j)!}
.br
`binom_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L32>`_
Binomial coefficients
`dble_fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L122>`_
Undocumented
`dble_fact_even <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L139>`_
n!!
`dble_fact_odd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L183>`_
n!!
`dble_logfact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L217>`_
n!!
`ddfact2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L242>`_
Undocumented
`degree_max_integration_lebedev <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/angular_integration.irp.f#L1>`_
integrate correctly a polynom of order "degree_max_integration_lebedev"
needed for the angular integration according to LEBEDEV formulae
`dset_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_323#L27>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`dset_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L90>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`dsort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_270#L30>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`dtranspose <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/transpose.irp.f#L41>`_
Transpose input matrix A into output matrix B
`erf0 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L104>`_
Undocumented
`extrapolate_data <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/extrapolation.irp.f#L1>`_
Extrapolate the data to the FCI limit
`f_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L404>`_
function that calculates the following integral
\int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx
`fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L49>`_
n!
`fact_inv <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L109>`_
1/n!
`find_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L348>`_
Find A.C = B
`gammln <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L270>`_
Undocumented
`gammp <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L132>`_
Undocumented
`gaussian_product <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L181>`_
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
`gaussian_product_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L223>`_
Gaussian product in 1D.
e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
`gcf <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L210>`_
Undocumented
`get_inverse <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L266>`_
Returns the inverse of the square matrix A
`get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L294>`_
Find C = A^-1
`give_explicit_poly_and_gaussian <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L46>`_
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
`give_explicit_poly_and_gaussian_double <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L119>`_
Transforms the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3)
exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) exp(-(r-Nucl_center)^2 gama
.br
into
fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
* [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
* [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
`give_explicit_poly_and_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L1>`_
Transform the product of
(x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
into
fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2)
`gser <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L166>`_
Undocumented
`heap_dsort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L312>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L375>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_i2sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L1008>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L1071>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_i8sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L776>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L839>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_isort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L544>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_isort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L607>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`heap_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L80>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`heap_sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L143>`_
Sort array x(isize) using the heap sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`hermite <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L536>`_
Hermite polynomial
`i2radix_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_605#L423>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`i2set_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_323#L102>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`i2set_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L261>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`i2sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_291#L34>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`i8radix_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_605#L213>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`i8radix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_605#L843>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`i8set_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_323#L77>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`i8set_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L204>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`i8sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_291#L18>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_dsort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L234>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_dsort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L59>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_i2sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L930>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_i2sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L230>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_i8sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L698>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_i8sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L173>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_isort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L466>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_isort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L116>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`insertion_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L2>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`insertion_sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L2>`_
Sort array x(isize) using the insertion sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
This is a version for very large arrays where the indices need
to be in integer*8 format
`inv_int <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L248>`_
1/i
`iradix_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_605#L3>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`iradix_sort_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_605#L633>`_
Sort integer array x(isize) using the radix sort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
iradix should be -1 in input.
`iset_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_323#L52>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`iset_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L147>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`isort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_291#L2>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L446>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`lapack_diag_s2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L514>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`lapack_diagd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L379>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`lapack_partial_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L580>`_
Diagonalize matrix H
.br
H is untouched between input and ouptut
.br
eigevalues(i) = ith lowest eigenvalue of the H matrix
.br
eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
.br
`logfact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L77>`_
n!
`lowercase <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L364>`_
Transform to lower case
`map_load_from_disk <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/map_functions.irp.f#L66>`_
Undocumented
`map_save_to_disk <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/map_functions.irp.f#L1>`_
Undocumented
`matrix_vector_product <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L661>`_
performs u1 =! performs u1 +( u0 * matrix)
`multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L261>`_
Multiply two polynomials
D(t) =! D(t) +( B(t)*C(t))
`n_points_integration_angular_lebedev <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/angular_integration.irp.f#L11>`_
Number of points needed for the angular integral
`normalize <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L318>`_
Normalizes vector u
`nproc <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L274>`_
Number of current OpenMP threads
`ortho_canonical <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L45>`_
Compute C_new=C_old.U.s^-1/2 canonical orthogonalization.
.br
overlap : overlap matrix
.br
LDA : leftmost dimension of overlap array
.br
N : Overlap matrix is NxN (array is (LDA,N) )
.br
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
.br
LDC : leftmost dimension of C
.br
m : Coefficients matrix is MxN, ( array is (LDC,N) )
.br
`ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L182>`_
Compute C_new=C_old.S^-1/2 orthogonalization.
.br
overlap : overlap matrix
.br
LDA : leftmost dimension of overlap array
.br
N : Overlap matrix is NxN (array is (LDA,N) )
.br
C : Coefficients of the vectors to orthogonalize. On exit,
orthogonal vectors
.br
LDC : leftmost dimension of C
.br
M : Coefficients matrix is MxN, ( array is (LDC,N) )
.br
`ortho_qr <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L123>`_
Orthogonalization using Q.R factorization
.br
A : matrix to orthogonalize
.br
LDA : leftmost dimension of A
.br
n : Number of rows of A
.br
m : Number of columns of A
.br
`ortho_qr_unblocked <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L155>`_
Orthogonalization using Q.R factorization
.br
A : matrix to orthogonalize
.br
LDA : leftmost dimension of A
.br
n : Number of rows of A
.br
m : Number of columns of A
.br
`overlap_a_b_c <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L35>`_
Undocumented
`overlap_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L1>`_
.. math::
.br
\sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx
.br
`overlap_gaussian_xyz <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L113>`_
.. math::
.br
S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
S = S_x S_y S_z
.br
`overlap_x_abs <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L175>`_
.. math ::
.br
\int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx
.br
`phi_angular_integration_lebedev <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/angular_integration.irp.f#L41>`_
Theta phi values together with the weights values for the angular integration :
integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi)
Note that theta and phi are in DEGREES !!
`progress_active <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L29>`_
Current status for displaying progress bars. Global variable.
`progress_bar <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L27>`_
Current status for displaying progress bars. Global variable.
`progress_timeout <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L28>`_
Current status for displaying progress bars. Global variable.
`progress_title <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L31>`_
Current status for displaying progress bars. Global variable.
`progress_value <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L30>`_
Current status for displaying progress bars. Global variable.
`quick_dsort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L262>`_
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`quick_i2sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L958>`_
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`quick_i8sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L726>`_
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`quick_isort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L494>`_
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`quick_sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L30>`_
Sort array x(isize) using the quicksort algorithm.
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`rec__quicksort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L43>`_
Undocumented
`rec_d_quicksort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L275>`_
Undocumented
`rec_i2_quicksort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L971>`_
Undocumented
`rec_i8_quicksort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L739>`_
Undocumented
`rec_i_quicksort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L507>`_
Undocumented
`recentered_poly2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L359>`_
Recenter two polynomials
`rint <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L432>`_
.. math::
.br
\int_0^1 dx \exp(-p x^2) x^n
.br
`rint1 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L592>`_
Standard version of rint
`rint_large_n <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L561>`_
Version of rint for large values of n
`rint_sum <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L480>`_
Needed for the calculation of two-electron integrals.
`rinteg <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L46>`_
Undocumented
`rintgauss <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L30>`_
Undocumented
`run_progress <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L45>`_
Display a progress bar with documentation of what is happening
`sabpartial <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/need.irp.f#L2>`_
Undocumented
`set_order <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_323#L2>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
`set_order_big <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_388#L33>`_
array A has already been sorted, and iorder has contains the new order of
elements of A. This subroutine changes the order of x to match the new order of A.
This is a version for very large arrays where the indices need
to be in integer*8 format
`set_zero_extra_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L637>`_
Undocumented
`sort <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_270#L2>`_
Sort array x(isize).
iorder in input should be (1,2,3,...,isize), and in output
contains the new order of the elements.
`sorted_dnumber <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L441>`_
Returns the number of sorted elements
`sorted_i2number <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L1137>`_
Returns the number of sorted elements
`sorted_i8number <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L905>`_
Returns the number of sorted elements
`sorted_inumber <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L673>`_
Returns the number of sorted elements
`sorted_number <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/sort.irp.f_template_238#L209>`_
Returns the number of sorted elements
`start_progress <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L1>`_
Starts the progress bar
`stop_progress <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/progress.irp.f#L19>`_
Stop the progress bar
`svd <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L1>`_
Compute A = U.D.Vt
.br
LDx : leftmost dimension of x
.br
Dimsneion of A is m x n
.br
`theta_angular_integration_lebedev <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/angular_integration.irp.f#L40>`_
Theta phi values together with the weights values for the angular integration :
integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi)
Note that theta and phi are in DEGREES !!
`transpose <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/transpose.irp.f#L2>`_
Transpose input matrix A into output matrix B
`u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L304>`_
Compute <u|u>
`u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L290>`_
Compute <u|v>
`wall_time <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L259>`_
The equivalent of cpu_time, but for the wall time.
`weights_angular_integration_lebedev <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/angular_integration.irp.f#L42>`_
Theta phi values together with the weights values for the angular integration :
integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1<i<n_points_integration_angular_lebedev) f(xi,yi,zi)
Note that theta and phi are in DEGREES !!
`write_git_log <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L234>`_
Write the last git commit in file iunit.