quantum_package/src/Nuclei/nuclei.irp.f

266 lines
8.3 KiB
Fortran

BEGIN_PROVIDER [ double precision, nucl_coord, (nucl_num,3) ]
implicit none
BEGIN_DOC
! Nuclear coordinates in the format (:, {x,y,z})
END_DOC
PROVIDE ezfio_filename nucl_label nucl_charge
if (mpi_master) then
double precision, allocatable :: buffer(:,:)
nucl_coord = 0.d0
allocate (buffer(nucl_num,3))
buffer = 0.d0
logical :: has
call ezfio_has_nuclei_nucl_coord(has)
if (.not.has) then
print *, irp_here
stop 1
endif
call ezfio_get_nuclei_nucl_coord(buffer)
integer :: i,j
do i=1,3
do j=1,nucl_num
nucl_coord(j,i) = buffer(j,i)
enddo
enddo
deallocate(buffer)
character*(64), parameter :: f = '(A16, 4(1X,F12.6))'
character*(64), parameter :: ft= '(A16, 4(1X,A12 ))'
double precision, parameter :: a0= 0.529177249d0
call write_time(output_Nuclei)
write(output_Nuclei,'(A)') ''
write(output_Nuclei,'(A)') 'Nuclear Coordinates (Angstroms)'
write(output_Nuclei,'(A)') '==============================='
write(output_Nuclei,'(A)') ''
write(output_Nuclei,ft) &
'================','============','============','============','============'
write(output_Nuclei,*) &
' Atom Charge X Y Z '
write(output_Nuclei,ft) &
'================','============','============','============','============'
do i=1,nucl_num
write(output_Nuclei,f) nucl_label(i), nucl_charge(i), &
nucl_coord(i,1)*a0, &
nucl_coord(i,2)*a0, &
nucl_coord(i,3)*a0
enddo
write(output_Nuclei,ft) &
'================','============','============','============','============'
write(output_Nuclei,'(A)') ''
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( nucl_coord, 3*nucl_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read nucl_coord with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ double precision, nucl_coord_transp, (3,nucl_num) ]
implicit none
BEGIN_DOC
! Transposed array of nucl_coord
END_DOC
integer :: i, k
nucl_coord_transp = 0.d0
do i=1,nucl_num
nucl_coord_transp(1,i) = nucl_coord(i,1)
nucl_coord_transp(2,i) = nucl_coord(i,2)
nucl_coord_transp(3,i) = nucl_coord(i,3)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, nucl_dist_2, (nucl_num,nucl_num) ]
&BEGIN_PROVIDER [ double precision, nucl_dist_vec_x, (nucl_num,nucl_num) ]
&BEGIN_PROVIDER [ double precision, nucl_dist_vec_y, (nucl_num,nucl_num) ]
&BEGIN_PROVIDER [ double precision, nucl_dist_vec_z, (nucl_num,nucl_num) ]
&BEGIN_PROVIDER [ double precision, nucl_dist, (nucl_num,nucl_num) ]
implicit none
BEGIN_DOC
! nucl_dist : Nucleus-nucleus distances
! nucl_dist_2 : Nucleus-nucleus distances squared
! nucl_dist_vec : Nucleus-nucleus distances vectors
END_DOC
integer :: ie1, ie2, l
integer,save :: ifirst = 0
if (ifirst == 0) then
ifirst = 1
nucl_dist = 0.d0
nucl_dist_2 = 0.d0
nucl_dist_vec_x = 0.d0
nucl_dist_vec_y = 0.d0
nucl_dist_vec_z = 0.d0
endif
do ie2 = 1,nucl_num
do ie1 = 1,nucl_num
nucl_dist_vec_x(ie1,ie2) = nucl_coord(ie1,1) - nucl_coord(ie2,1)
nucl_dist_vec_y(ie1,ie2) = nucl_coord(ie1,2) - nucl_coord(ie2,2)
nucl_dist_vec_z(ie1,ie2) = nucl_coord(ie1,3) - nucl_coord(ie2,3)
enddo
do ie1 = 1,nucl_num
nucl_dist_2(ie1,ie2) = nucl_dist_vec_x(ie1,ie2)*nucl_dist_vec_x(ie1,ie2) +&
nucl_dist_vec_y(ie1,ie2)*nucl_dist_vec_y(ie1,ie2) + &
nucl_dist_vec_z(ie1,ie2)*nucl_dist_vec_z(ie1,ie2)
nucl_dist(ie1,ie2) = sqrt(nucl_dist_2(ie1,ie2))
ASSERT (nucl_dist(ie1,ie2) > 0.d0)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, positive_charge_barycentre,(3)]
implicit none
BEGIN_DOC
! Centroid of the positive charges
END_DOC
integer :: l
positive_charge_barycentre(1) = 0.d0
positive_charge_barycentre(2) = 0.d0
positive_charge_barycentre(3) = 0.d0
do l = 1, nucl_num
positive_charge_barycentre(1) += nucl_charge(l) * nucl_coord(l,1)
positive_charge_barycentre(2) += nucl_charge(l) * nucl_coord(l,2)
positive_charge_barycentre(3) += nucl_charge(l) * nucl_coord(l,3)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, nuclear_repulsion ]
implicit none
BEGIN_DOC
! Nuclear repulsion energy
END_DOC
PROVIDE mpi_master nucl_coord nucl_charge nucl_num
if (disk_access_nuclear_repulsion.EQ.'Read') then
logical :: has
if (mpi_master) then
call ezfio_has_nuclei_nuclear_repulsion(has)
if (has) then
call ezfio_get_nuclei_nuclear_repulsion(nuclear_repulsion)
else
print *, 'nuclei/nuclear_repulsion not found in EZFIO file'
stop 1
endif
print*, 'Read nuclear_repulsion'
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( nuclear_repulsion, 1, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read nuclear_repulsion with MPI'
endif
IRP_ENDIF
else
integer :: k,l
double precision :: Z12, r2, x(3)
nuclear_repulsion = 0.d0
do l = 1, nucl_num
do k = 1, nucl_num
if(k == l) then
cycle
endif
Z12 = nucl_charge(k)*nucl_charge(l)
x(1) = nucl_coord(k,1) - nucl_coord(l,1)
x(2) = nucl_coord(k,2) - nucl_coord(l,2)
x(3) = nucl_coord(k,3) - nucl_coord(l,3)
r2 = x(1)*x(1) + x(2)*x(2) + x(3)*x(3)
nuclear_repulsion += Z12/dsqrt(r2)
enddo
enddo
nuclear_repulsion *= 0.5d0
end if
call write_time(output_Nuclei)
call write_double(output_Nuclei,nuclear_repulsion, &
'Nuclear repulsion energy')
if (disk_access_nuclear_repulsion.EQ.'Write') then
if (mpi_master) then
call ezfio_set_nuclei_nuclear_repulsion(nuclear_repulsion)
endif
endif
END_PROVIDER
BEGIN_PROVIDER [ character*(4), element_name, (0:127)]
&BEGIN_PROVIDER [ double precision, element_mass, (0:127) ]
BEGIN_DOC
! Array of the name of element, sorted by nuclear charge (integer)
END_DOC
integer :: iunit
integer, external :: getUnitAndOpen
character*(128) :: filename
if (mpi_master) then
call getenv('QP_ROOT',filename)
filename = trim(filename)//'/data/list_element.txt'
iunit = getUnitAndOpen(filename,'r')
element_mass(:) = 0.d0
do i=0,127
write(element_name(i),'(I4)') i
enddo
character*(80) :: buffer, dummy
do
read(iunit,'(A80)',end=10) buffer
read(buffer,*) i ! First read i
read(buffer,*) i, element_name(i), dummy, element_mass(i)
enddo
10 continue
close(10)
endif
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( element_name, 128*4, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read element_name with MPI'
endif
call MPI_BCAST( element_mass, 128, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read element_name with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ double precision, center_of_mass, (3) ]
implicit none
BEGIN_DOC
! Center of mass of the molecule
END_DOC
integer :: i,j
double precision :: s
center_of_mass(:) = 0.d0
s = 0.d0
do i=1,nucl_num
do j=1,3
center_of_mass(j) += nucl_coord(i,j)* element_mass(int(nucl_charge(i)))
enddo
s += element_mass(int(nucl_charge(i)))
enddo
s = 1.d0/s
center_of_mass(:) = center_of_mass(:)*s
END_PROVIDER