10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-07 22:53:57 +01:00
quantum_package/src/Utils/LinearAlgebra.irp.f
2015-01-07 17:59:31 +01:00

454 lines
11 KiB
Fortran

subroutine ortho_lowdin(overlap,LDA,N,C,LDC,m)
implicit none
BEGIN_DOC
! Compute C_new=C_old.S^-1/2 canonical orthogonalization.
!
! overlap : overlap matrix
!
! LDA : leftmost dimension of overlap array
!
! N : Overlap matrix is NxN (array is (LDA,N) )
!
! C : Coefficients of the vectors to orthogonalize. On exit,
! orthogonal vectors
!
! LDC : leftmost dimension of C
!
! m : Coefficients matrix is MxN, ( array is (LDC,N) )
!
END_DOC
integer, intent(in) :: LDA, ldc, n, m
double precision, intent(in) :: overlap(lda,n)
double precision, intent(inout) :: C(ldc,n)
double precision :: U(ldc,n)
double precision :: Vt(lda,n)
double precision :: D(n)
double precision :: S_half(lda,n)
double precision,allocatable :: work(:)
!DEC$ ATTRIBUTES ALIGN : 64 :: U, Vt, D, work
integer :: info, lwork, i, j, k
double precision,allocatable :: overlap_tmp(:,:)
allocate (overlap_tmp(lda,n))
overlap_tmp = overlap
allocate(work(1))
lwork = -1
call dgesvd('A','A', n, n, overlap_tmp, lda, &
D, U, ldc, Vt, lda, work, lwork, info)
lwork = work(1)
deallocate(work)
allocate(work(lwork))
call dgesvd('A','A', n, n, overlap_tmp, lda, &
D, U, ldc, Vt, lda, work, lwork, info)
deallocate(work,overlap_tmp)
if (info /= 0) then
print *, info, ': SVD failed'
stop
endif
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(S_half,U,D,Vt,n,C,m) &
!$OMP PRIVATE(i,j,k)
!$OMP DO
do i=1,n
if ( D(i) < 1.d-6 ) then
D(i) = 0.d0
else
D(i) = 1.d0/dsqrt(D(i))
endif
do j=1,n
S_half(j,i) = 0.d0
enddo
enddo
!$OMP END DO
do k=1,n
!$OMP DO
do j=1,n
do i=1,n
S_half(i,j) = S_half(i,j) + U(i,k)*D(k)*Vt(k,j)
enddo
enddo
!$OMP END DO NOWAIT
enddo
!$OMP BARRIER
!$OMP DO
do j=1,n
do i=1,m
U(i,j) = C(i,j)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm('N','N',m,n,n,1.d0,U,size(U,1),S_half,size(S_half,1),0.d0,C,size(C,1))
end
subroutine get_pseudo_inverse(A,m,n,C,LDA)
implicit none
BEGIN_DOC
! Find C = A^-1
END_DOC
integer, intent(in) :: m,n, LDA
double precision, intent(in) :: A(LDA,n)
double precision, intent(out) :: C(n,m)
double precision, allocatable :: U(:,:), D(:), Vt(:,:), work(:), A_tmp(:,:)
integer :: info, lwork
integer :: i,j,k
allocate (D(n),U(m,n),Vt(n,n),work(1),A_tmp(m,n))
do j=1,n
do i=1,m
A_tmp(i,j) = A(i,j)
enddo
enddo
lwork = -1
call dgesvd('S','A', m, n, A_tmp, m,D,U,m,Vt,n,work,lwork,info)
if (info /= 0) then
print *, info, ': SVD failed'
stop
endif
lwork = work(1)
deallocate(work)
allocate(work(lwork))
call dgesvd('S','A', m, n, A_tmp, m,D,U,m,Vt,n,work,lwork,info)
if (info /= 0) then
print *, info, ': SVD failed'
stop 1
endif
do i=1,n
if (abs(D(i)) > 1.d-6) then
D(i) = 1.d0/D(i)
else
D(i) = 0.d0
endif
enddo
C = 0.d0
do i=1,m
do j=1,n
do k=1,n
C(j,i) += U(i,k) * D(k) * Vt(k,j)
enddo
enddo
enddo
deallocate(U,D,Vt,work,A_tmp)
end
subroutine find_rotation(A,LDA,B,m,C,n)
implicit none
BEGIN_DOC
! Find A.C = B
END_DOC
integer, intent(in) :: m,n, LDA
double precision, intent(in) :: A(LDA,n), B(LDA,n)
double precision, intent(out) :: C(n,n)
double precision, allocatable :: A_inv(:,:)
allocate(A_inv(LDA,n))
call get_pseudo_inverse(A,m,n,A_inv,LDA)
integer :: i,j,k
call dgemm('N','N',n,n,m,1.d0,A_inv,n,B,LDA,0.d0,C,n)
deallocate(A_inv)
end
subroutine apply_rotation(A,LDA,R,LDR,B,LDB,m,n)
implicit none
BEGIN_DOC
! Apply the rotation found by find_rotation
END_DOC
double precision, intent(in) :: R(LDR,n)
double precision, intent(in) :: A(LDA,n)
double precision, intent(out) :: B(LDB,n)
integer, intent(in) :: m,n, LDA, LDB, LDR
call dgemm('N','N',m,n,n,1.d0,A,LDA,R,LDR,0.d0,B,LDB)
end
subroutine lapack_diagd(eigvalues,eigvectors,H,nmax,n)
implicit none
BEGIN_DOC
! Diagonalize matrix H
!
! H is untouched between input and ouptut
!
! eigevalues(i) = ith lowest eigenvalue of the H matrix
!
! eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
!
END_DOC
integer, intent(in) :: n,nmax
double precision, intent(out) :: eigvectors(nmax,n)
double precision, intent(out) :: eigvalues(n)
double precision, intent(in) :: H(nmax,n)
double precision,allocatable :: eigenvalues(:)
double precision,allocatable :: work(:)
integer ,allocatable :: iwork(:)
double precision,allocatable :: A(:,:)
integer :: lwork, info, i,j,l,k, liwork
allocate(A(nmax,n),eigenvalues(n))
! print*,'Diagonalization by jacobi'
! print*,'n = ',n
A=H
lwork = 2*n*n + 6*n+ 1
liwork = 5*n + 3
allocate (work(lwork),iwork(liwork))
lwork = -1
liwork = -1
call DSYEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
iwork, liwork, info )
if (info < 0) then
print *, irp_here, ': DSYEVD: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int( work( 1 ) )
liwork = iwork(1)
deallocate (work,iwork)
allocate (work(lwork),iwork(liwork))
call DSYEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
iwork, liwork, info )
deallocate(work,iwork)
if (info < 0) then
print *, irp_here, ': DSYEVD: the ',-info,'-th argument had an illegal value'
stop 2
else if( info > 0 ) then
write(*,*)'DSYEVD Failed'
stop 1
end if
eigvectors = 0.d0
eigvalues = 0.d0
do j = 1, n
eigvalues(j) = eigenvalues(j)
do i = 1, n
eigvectors(i,j) = A(i,j)
enddo
enddo
deallocate(A,eigenvalues)
end
subroutine lapack_diag(eigvalues,eigvectors,H,nmax,n)
implicit none
BEGIN_DOC
! Diagonalize matrix H
!
! H is untouched between input and ouptut
!
! eigevalues(i) = ith lowest eigenvalue of the H matrix
!
! eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
!
END_DOC
integer, intent(in) :: n,nmax
double precision, intent(out) :: eigvectors(nmax,n)
double precision, intent(out) :: eigvalues(n)
double precision, intent(in) :: H(nmax,n)
double precision,allocatable :: eigenvalues(:)
double precision,allocatable :: work(:)
double precision,allocatable :: A(:,:)
integer :: lwork, info, i,j,l,k, liwork
allocate(A(nmax,n),eigenvalues(n))
! print*,'Diagonalization by jacobi'
! print*,'n = ',n
A=H
lwork = 2*n*n + 6*n+ 1
allocate (work(lwork))
lwork = -1
call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
info )
if (info < 0) then
print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int( work( 1 ) )
deallocate (work)
allocate (work(lwork))
call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
info )
deallocate(work)
if (info < 0) then
print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value'
stop 2
else if( info > 0 ) then
write(*,*)'DSYEV Failed'
stop 1
end if
eigvectors = 0.d0
eigvalues = 0.d0
do j = 1, n
eigvalues(j) = eigenvalues(j)
do i = 1, n
eigvectors(i,j) = A(i,j)
enddo
enddo
deallocate(A,eigenvalues)
end
subroutine lapack_diag_s2(eigvalues,eigvectors,H,nmax,n)
implicit none
BEGIN_DOC
! Diagonalize matrix H
!
! H is untouched between input and ouptut
!
! eigevalues(i) = ith lowest eigenvalue of the H matrix
!
! eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
!
END_DOC
integer, intent(in) :: n,nmax
double precision, intent(out) :: eigvectors(nmax,n)
double precision, intent(out) :: eigvalues(n)
double precision, intent(in) :: H(nmax,n)
double precision,allocatable :: eigenvalues(:)
double precision,allocatable :: work(:)
double precision,allocatable :: A(:,:)
integer :: lwork, info, i,j,l,k, liwork
allocate(A(nmax,n),eigenvalues(n))
! print*,'Diagonalization by jacobi'
! print*,'n = ',n
A=H
lwork = 2*n*n + 6*n+ 1
allocate (work(lwork))
lwork = -1
call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
info )
if (info < 0) then
print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int( work( 1 ) )
deallocate (work)
allocate (work(lwork))
call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, &
info )
deallocate(work)
if (info < 0) then
print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value'
stop 2
else if( info > 0 ) then
write(*,*)'DSYEV Failed'
stop 1
end if
eigvectors = 0.d0
eigvalues = 0.d0
do j = 1, n
eigvalues(j) = eigenvalues(j)
do i = 1, n
eigvectors(i,j) = A(i,j)
enddo
enddo
deallocate(A,eigenvalues)
end
subroutine lapack_partial_diag(eigvalues,eigvectors,H,nmax,n,n_st)
implicit none
BEGIN_DOC
! Diagonalize matrix H
!
! H is untouched between input and ouptut
!
! eigevalues(i) = ith lowest eigenvalue of the H matrix
!
! eigvectors(i,j) = <i|psi_j> where i is the basis function and psi_j is the j th eigenvector
!
END_DOC
integer, intent(in) :: n,nmax,n_st
double precision, intent(out) :: eigvectors(nmax,n)
double precision, intent(out) :: eigvalues(n)
double precision, intent(in) :: H(nmax,n)
double precision,allocatable :: work(:)
integer ,allocatable :: iwork(:), isuppz(:)
double precision,allocatable :: A(:,:)
integer :: lwork, info, i,j,l,k,m, liwork
allocate(A(nmax,n))
A=H
lwork = 2*n*n + 6*n+ 1
liwork = 5*n + 3
allocate (work(lwork),iwork(liwork),isuppz(2*N_st))
lwork = -1
liwork = -1
call DSYEVR( 'V', 'I', 'U', n, A, nmax, 0.d0, 0.d0, 1, n_st, 1.d-10, m, eigvalues, eigvectors, nmax, isuppz, work, lwork, &
iwork, liwork, info )
if (info < 0) then
print *, irp_here, ': DSYEVR: the ',-info,'-th argument had an illegal value'
stop 2
endif
lwork = int( work( 1 ) )
liwork = iwork(1)
deallocate (work,iwork)
allocate (work(lwork),iwork(liwork))
call DSYEVR( 'V', 'I', 'U', n, A, nmax, 0.d0, 0.d0, 1, n_st, 1.d-10, m, eigvalues, eigvectors, nmax, isuppz, work, lwork, &
iwork, liwork, info )
deallocate(work,iwork)
if (info < 0) then
print *, irp_here, ': DSYEVR: the ',-info,'-th argument had an illegal value'
stop 2
else if( info > 0 ) then
write(*,*)'DSYEVR Failed'
stop 1
end if
deallocate(A)
end
subroutine set_zero_extra_diag(i1,i2,matrix,lda,m)
implicit none
integer, intent(in) :: i1,i2,lda,m
double precision, intent(inout) :: matrix(lda,m)
integer :: i,j
do j=i1,i2
do i = 1,i1-1
matrix(i,j) = 0.d0
matrix(j,i) = 0.d0
enddo
enddo
do i = i2,i1
do j=i2+1,m
matrix(i,j) = 0.d0
matrix(j,i) = 0.d0
enddo
enddo
end