10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-18 20:13:07 +01:00
quantum_package/plugins/Perturbation/pt2_equations.irp.f

406 lines
13 KiB
Fortran

BEGIN_TEMPLATE
subroutine pt2_epstein_nesbet ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! compute the standard Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
!
! for the various N_st states.
!
! c_pert(i) = <psi(i)|H|det_pert>/( E(i) - <det_pert|H|det_pert> )
!
! e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - <det_pert|H|det_pert> )
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem_fock, h
double precision :: i_H_psi_array(N_st)
PROVIDE selection_criterion
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
!call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
do i =1,N_st
if(electronic_energy(i)>h.and.electronic_energy(i).ne.0.d0)then
c_pert(i) = -1.d0
e_2_pert(i) = selection_criterion*selection_criterion_factor*2.d0
else if (dabs(electronic_energy(i) - h) > 1.d-6) then
c_pert(i) = i_H_psi_array(i) / (electronic_energy(i) - h)
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
else
c_pert(i) = -1.d0
e_2_pert(i) = -dabs(i_H_psi_array(i))
H_pert_diag(i) = h
endif
enddo
end
subroutine pt2_epstein_nesbet_2x2 ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
!
! for the various N_st states.
!
! e_2_pert(i) = 0.5 * (( <det_pert|H|det_pert> - E(i) ) - sqrt( ( <det_pert|H|det_pert> - E(i)) ^2 + 4 <psi(i)|H|det_pert>^2 )
!
! c_pert(i) = e_2_pert(i)/ <psi(i)|H|det_pert>
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem_fock,delta_e, h
double precision :: i_H_psi_array(N_st)
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
!call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
do i =1,N_st
if (i_H_psi_array(i) /= 0.d0) then
delta_e = h - electronic_energy(i)
if (delta_e > 0.d0) then
e_2_pert(i) = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * i_H_psi_array(i) * i_H_psi_array(i)))
else
e_2_pert(i) = 0.5d0 * (delta_e + dsqrt(delta_e * delta_e + 4.d0 * i_H_psi_array(i) * i_H_psi_array(i)))
endif
if (dabs(i_H_psi_array(i)) > 1.d-6) then
c_pert(i) = e_2_pert(i)/i_H_psi_array(i)
else
c_pert(i) = 0.d0
endif
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
else
e_2_pert(i) = 0.d0
c_pert(i) = 0.d0
H_pert_diag(i) = 0.d0
endif
enddo
end
subroutine pt2_moller_plesset ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! compute the standard Moller-Plesset perturbative first order coefficient and second order energetic contribution
!
! for the various n_st states.
!
! c_pert(i) = <psi(i)|H|det_pert>/(difference of orbital energies)
!
! e_2_pert(i) = <psi(i)|H|det_pert>^2/(difference of orbital energies)
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem_fock
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase,delta_e,h
double precision :: i_H_psi_array(N_st)
integer :: h1,h2,p1,p2,s1,s2
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
call get_excitation(ref_bitmask,det_pert,exc,degree,phase,Nint)
if (degree == 2) then
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
delta_e = (Fock_matrix_diag_mo(h1) - Fock_matrix_diag_mo(p1)) + &
(Fock_matrix_diag_mo(h2) - Fock_matrix_diag_mo(p2))
delta_e = 1.d0/delta_e
! print*,'h1,p1',h1,p1
! print*,'h2,p2',h2,p2
else if (degree == 1) then
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
delta_e = Fock_matrix_diag_mo(h1) - Fock_matrix_diag_mo(p1)
delta_e = 1.d0/delta_e
else
delta_e = 0.d0
endif
if (delta_e /= 0.d0) then
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
else
i_H_psi_array(:) = 0.d0
h = 0.d0
endif
do i =1,N_st
H_pert_diag(i) = h
c_pert(i) = i_H_psi_array(i) *delta_e
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
enddo
end
subroutine pt2_epstein_nesbet_SC2_projected ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
!
! for the various N_st states,
!
! but with the correction in the denominator
!
! comming from the interaction of that determinant with all the others determinants
!
! that can be repeated by repeating all the double excitations
!
! : you repeat all the correlation energy already taken into account in electronic_energy(1)
!
! that could be repeated to this determinant.
!
! In addition, for the perturbative energetic contribution you have the standard second order
!
! e_2_pert = <psi_i|H|det_pert>^2/(Delta_E)
!
! and also the purely projected contribution
!
! H_pert_diag = <HF|H|det_pert> c_pert
END_DOC
double precision :: i_H_psi_array(N_st)
integer :: idx_repeat(0:ndet)
integer :: i,j,degree,l
double precision :: diag_H_mat_elem_fock,accu_e_corr,hij,h0j,h,delta_E
double precision :: repeat_all_e_corr,accu_e_corr_tmp,e_2_pert_fonda
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
call i_H_psi_SC2(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array,idx_repeat)
accu_e_corr = 0.d0
!$IVDEP
do i = 1, idx_repeat(0)
accu_e_corr = accu_e_corr + E_corr_per_selectors(idx_repeat(i))
enddo
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
h = h + accu_e_corr
delta_E = 1.d0/(electronic_energy(1) - h)
c_pert(1) = i_H_psi_array(1) /(electronic_energy(1) - h)
e_2_pert(1) = i_H_psi_array(1) * c_pert(1)
do i =2,N_st
H_pert_diag(i) = h
if (dabs(electronic_energy(i) - h) > 1.d-6) then
c_pert(i) = i_H_psi_array(i) / (-dabs(electronic_energy(i) - h))
e_2_pert(i) = (c_pert(i) * i_H_psi_array(i))
else
c_pert(i) = i_H_psi_array(i)
e_2_pert(i) = -dabs(i_H_psi_array(i))
endif
enddo
degree = popcnt(xor( ref_bitmask(1,1), det_pert(1,1))) + &
popcnt(xor( ref_bitmask(1,2), det_pert(1,2)))
!DEC$ NOUNROLL
do l=2,Nint
degree = degree+ popcnt(xor( ref_bitmask(l,1), det_pert(l,1))) + &
popcnt(xor( ref_bitmask(l,2), det_pert(l,2)))
enddo
if(degree==4)then
! <psi|delta_H|psi>
e_2_pert_fonda = e_2_pert(1)
H_pert_diag(1) = e_2_pert(1) * c_pert(1) * c_pert(1)
do i = 1, N_st
do j = 1, idx_repeat(0)
e_2_pert(i) += e_2_pert_fonda * psi_selectors_coef(idx_repeat(j),i) * psi_selectors_coef(idx_repeat(j),i)
enddo
enddo
endif
end
subroutine pt2_epstein_nesbet_SC2_no_projected ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! compute the Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
!
! for the various N_st states,
!
! but with the correction in the denominator
!
! comming from the interaction of that determinant with all the others determinants
!
! that can be repeated by repeating all the double excitations
!
! : you repeat all the correlation energy already taken into account in electronic_energy(1)
!
! that could be repeated to this determinant.
!
! In addition, for the perturbative energetic contribution you have the standard second order
!
! e_2_pert = <psi_i|H|det_pert>^2/(Delta_E)
!
! and also the purely projected contribution
!
! H_pert_diag = <HF|H|det_pert> c_pert
END_DOC
double precision :: i_H_psi_array(N_st)
integer :: idx_repeat(0:ndet)
integer :: i,j,degree,l
double precision :: diag_H_mat_elem_fock,accu_e_corr,hij,h0j,h,delta_E
double precision :: repeat_all_e_corr,accu_e_corr_tmp,e_2_pert_fonda
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
call i_H_psi_SC2(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array,idx_repeat)
accu_e_corr = 0.d0
!$IVDEP
do i = 1, idx_repeat(0)
accu_e_corr = accu_e_corr + E_corr_per_selectors(idx_repeat(i))
enddo
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
h = h + accu_e_corr
delta_E = 1.d0/(electronic_energy(1) - h)
c_pert(1) = i_H_psi_array(1) /(electronic_energy(1) - h)
e_2_pert(1) = i_H_psi_array(1) * c_pert(1)
do i =2,N_st
H_pert_diag(i) = h
if (dabs(electronic_energy(i) - h) > 1.d-6) then
c_pert(i) = i_H_psi_array(i) / (-dabs(electronic_energy(i) - h))
e_2_pert(i) = (c_pert(i) * i_H_psi_array(i))
else
c_pert(i) = i_H_psi_array(i)
e_2_pert(i) = -dabs(i_H_psi_array(i))
endif
enddo
end
subroutine pt2_epstein_nesbet_sc2 ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! compute the standard Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
!
! for the various N_st states, but with the CISD_SC2 energies and coefficients
!
! c_pert(i) = <psi(i)|H|det_pert>/( E(i) - <det_pert|H|det_pert> )
!
! e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - <det_pert|H|det_pert> )
!
END_DOC
integer :: i,j
double precision :: i_H_psi_array(N_st)
double precision :: diag_H_mat_elem_fock, h
PROVIDE selection_criterion
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
!call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
do i =1,N_st
if(electronic_energy(i)>h.and.electronic_energy(i).ne.0.d0)then
c_pert(i) = -1.d0
e_2_pert(i) = selection_criterion*selection_criterion_factor*2.d0
else if (dabs(electronic_energy(i) - h) > 1.d-6) then
c_pert(i) = i_H_psi_array(i) / (electronic_energy(i) - h)
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
else
c_pert(i) = -1.d0
e_2_pert(i) = -dabs(i_H_psi_array(i))
H_pert_diag(i) = h
endif
enddo
end
subroutine pt2_dummy ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! Dummy perturbation to add all connected determinants.
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem_fock, h
double precision :: i_H_psi_array(N_st)
PROVIDE selection_criterion
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
h = diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint)
do i =1,N_st
if (i_H_psi_array(i) /= 0.d0) then
c_pert(i) = i_H_psi_array(i) / (electronic_energy(i) - h)
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
e_2_pert(i) = 1.d0
else
c_pert(i) = 0.d0
e_2_pert(i) = 0.d0
H_pert_diag(i) = 0.d0
endif
enddo
end
SUBST [ arguments, declarations ]
electronic_energy,det_ref,det_pert,fock_diag_tmp,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st,minilist,idx_minilist,N_minilist ;
integer, intent(in) :: Nint
integer, intent(in) :: ndet
integer, intent(in) :: N_st
integer, intent(in) :: N_minilist
integer(bit_kind), intent(in) :: det_ref (Nint,2)
integer(bit_kind), intent(in) :: det_pert(Nint,2)
double precision , intent(in) :: fock_diag_tmp(2,mo_tot_num+1)
double precision , intent(in) :: electronic_energy(N_st)
double precision , intent(out) :: c_pert(N_st)
double precision , intent(out) :: e_2_pert(N_st)
double precision, intent(out) :: H_pert_diag(N_st)
integer, intent(in) :: idx_minilist(0:N_det_selectors)
integer(bit_kind), intent(in) :: minilist(Nint,2,N_det_selectors)
;;
END_TEMPLATE
! Note : If the arguments are changed here, they should also be changed accordingly in
! the perturbation.template.f file.