10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-10 21:18:29 +01:00
quantum_package/plugins/MRPT_Utils/second_order_new_2p.irp.f
2016-11-30 17:02:28 +01:00

284 lines
13 KiB
Fortran

subroutine give_2p_new(matrix_2p)
use bitmasks
implicit none
double precision , intent(inout) :: matrix_2p(N_det,N_det,*)
integer :: i,v,r,a,b,c
integer :: iorb, vorb, rorb, aorb, borb,corb
integer :: ispin,jspin
integer :: idet,jdet
integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,n_act_orb,2,2)
double precision :: perturb_dets_phase(n_act_orb,n_act_orb,2,2)
double precision :: perturb_dets_hij(n_act_orb,n_act_orb,2,2)
double precision :: perturb_dets_hpsi0(n_act_orb,n_act_orb,2,2,N_states)
integer :: inint
integer :: elec_num_tab_local(2),acu_elec
integer(bit_kind) :: det_tmp(N_int,2)
integer(bit_kind) :: det_tmp_j(N_int,2)
integer :: exc(0:2,2,2)
integer :: accu_elec
double precision :: get_mo_bielec_integral
double precision :: active_int(n_act_orb,n_act_orb,2)
double precision :: hij,phase
double precision :: accu_contrib(N_states)
integer :: degree(N_det_Ref)
integer :: idx(0:N_det_Ref)
double precision :: delta_e(n_act_orb,n_act_orb,2,2,N_states)
double precision :: delta_e_inv(n_act_orb,n_act_orb,2,2,N_states)
double precision :: delta_e_inactive_virt(N_states)
integer :: istate
integer :: index_orb_act_mono(N_det,6)
integer :: kspin
double precision :: delta_e_ja(N_states)
double precision :: hja
double precision :: contrib_hij
double precision :: fock_operator_local(n_act_orb,n_act_orb,2)
double precision :: hij_test
integer ::i_ok
integer(bit_kind) :: det_tmp_bis(N_int,2)
double precision :: hib , hab
double precision :: delta_e_ab(N_states)
double precision :: hib_test,hja_test,hab_test
integer :: i_hole,i_part
double precision :: hia,hjb
integer :: other_spin(2)
other_spin(1) = 2
other_spin(2) = 1
accu_contrib = 0.d0
!matrix_2p = 0.d0
elec_num_tab_local = 0
do inint = 1, N_int
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
enddo
do v = 1, n_virt_orb ! First virtual
vorb = list_virt(v)
do r = 1, n_virt_orb ! Second virtual
rorb = list_virt(r)
! take all the integral you will need for r,v fixed
do a = 1, n_act_orb
aorb = list_act(a)
do b = 1, n_act_orb
borb = list_act(b)
active_int(a,b,1) = get_mo_bielec_integral(aorb,borb,rorb,vorb,mo_integrals_map) ! direct ( a--> r | b--> v )
active_int(a,b,2) = get_mo_bielec_integral(aorb,borb,vorb,rorb,mo_integrals_map) ! exchange ( b--> r | a--> v )
perturb_dets_phase(a,b,1,1) = -1000.d0
perturb_dets_phase(a,b,1,2) = -1000.d0
perturb_dets_phase(a,b,2,2) = -1000.d0
perturb_dets_phase(a,b,2,1) = -1000.d0
perturb_dets_phase(b,a,1,1) = -1000.d0
perturb_dets_phase(b,a,1,2) = -1000.d0
perturb_dets_phase(b,a,2,2) = -1000.d0
perturb_dets_phase(b,a,2,1) = -1000.d0
enddo
enddo
do istate = 1, N_states
delta_e_inactive_virt(istate) = &
- fock_virt_total_spin_trace(rorb,istate) &
- fock_virt_total_spin_trace(vorb,istate)
enddo
do idet = 1, N_det
! call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
call get_excitation_degree_vector(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
do ispin = 1, 2 ! spin of the couple a-a^dagger (aorb,rorb)
do jspin = 1, 2 ! spin of the couple a-a^dagger (borb,vorb)
do b = 1, n_act_orb ! First active
borb = list_act(b)
do a = 1, n_act_orb ! First active
aorb = list_act(a)
! if(ispin == 2.and. jspin ==1)then
! perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
! perturb_dets_hij(a,b,ispin,jspin) = 0.d0
! cycle ! condition not to double count
! endif
if(ispin == jspin .and. vorb.le.rorb)then
perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
perturb_dets_hij(a,b,ispin,jspin) = 0.d0
cycle ! condition not to double count
endif
if(ispin == jspin .and. aorb.le.borb) then
perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
perturb_dets_hij(a,b,ispin,jspin) = 0.d0
cycle ! condition not to double count
endif
do inint = 1, N_int
det_tmp(inint,1) = psi_det(inint,1,idet)
det_tmp(inint,2) = psi_det(inint,2,idet)
enddo
! Do the excitation (aorb,ispin) --> (rorb,ispin)
call clear_bit_to_integer(aorb,det_tmp(1,ispin),N_int) ! hole in "aorb" of spin Ispin
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
! Do the excitation (borb,jspin) --> (vorb,jspin)
call clear_bit_to_integer(borb,det_tmp(1,jspin),N_int) ! hole in "borb" of spin Jspin
call set_bit_to_integer(vorb,det_tmp(1,jspin),N_int) ! particle in "vorb" of spin Jspin
! Check if the excitation is possible or not on psi_det(idet)
accu_elec= 0
do inint = 1, N_int
accu_elec+= popcnt(det_tmp(inint,1)) + popcnt(det_tmp(inint,2))
enddo
if(accu_elec .ne. elec_num_tab_local(2)+elec_num_tab_local(1))then
perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
perturb_dets_hij(a,b,ispin,jspin) = 0.d0
cycle
endif
do inint = 1, N_int
perturb_dets(inint,1,a,b,ispin,jspin) = det_tmp(inint,1)
perturb_dets(inint,2,a,b,ispin,jspin) = det_tmp(inint,2)
enddo
call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int)
perturb_dets_phase(a,b,ispin,jspin) = phase
do istate = 1, N_states
delta_e(a,b,ispin,jspin,istate) = two_anhil(a,b,ispin,jspin,istate) + delta_e_inactive_virt(istate)
delta_e_inv(a,b,ispin,jspin,istate) = 1.d0 / delta_e(a,b,ispin,jspin,istate)
enddo
if(ispin == jspin)then
perturb_dets_hij(a,b,ispin,jspin) = phase * (active_int(a,b,2) - active_int(a,b,1) )
else
perturb_dets_hij(a,b,ispin,jspin) = phase * active_int(a,b,1)
endif
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,hij)
if(hij.ne.perturb_dets_hij(a,b,ispin,jspin))then
print*, active_int(a,b,1) , active_int(b,a,1)
double precision :: hmono,hdouble
call i_H_j_verbose(psi_det(1,1,idet),det_tmp,N_int,hij,hmono,hdouble)
print*, 'pb !! hij.ne.perturb_dets_hij(a,b,ispin,jspin)'
print*, ispin,jspin
print*, aorb,rorb,borb,vorb
print*, hij,perturb_dets_hij(a,b,ispin,jspin)
call debug_det(psi_det(1,1,idet),N_int)
call debug_det(det_tmp,N_int)
stop
endif
enddo ! b
enddo ! a
enddo ! jspin
enddo ! ispin
!!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS
!!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a^{\dagger}_b a_{a} | Idet>
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | K_{ab} | Idet>
do jdet = 1, idx(0)
if(degree(jdet)==1)then
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
i_hole = list_act_reverse(exc(1,1,1)) !!! a_a
i_part = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b}
kspin = 1 !!! kspin
index_orb_act_mono(idx(jdet),1) = i_hole
index_orb_act_mono(idx(jdet),2) = i_part
index_orb_act_mono(idx(jdet),3) = kspin
call i_H_j_dyall(psi_active(1,1,idet),psi_active(1,1,idx(jdet)),N_int,hij)
fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator
fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator
else
! Mono beta
i_hole = list_act_reverse(exc(1,1,2)) !!! a_a
i_part = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b}
kspin = 2 !!! kspin
index_orb_act_mono(idx(jdet),1) = i_hole
index_orb_act_mono(idx(jdet),2) = i_part
index_orb_act_mono(idx(jdet),3) = kspin
call i_H_j_dyall(psi_active(1,1,idet),psi_active(1,1,idx(jdet)),N_int,hij)
fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator
fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator
endif
else if(degree(jdet)==2)then
call get_double_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a ALPHA
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} ALPHA
index_orb_act_mono(idx(jdet),3) = 1
! Mono beta
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,1,2)) !!! a_a BETA
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b} BETA
index_orb_act_mono(idx(jdet),6) = 2
else if (exc(0,1,1) == 2) then
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a ALPHA
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} ALPHA
index_orb_act_mono(idx(jdet),3) = 1
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(2,1,1)) !!! a_c ALPHA
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(2,2,1)) !!! a^{\dagger}_{d} ALPHA
index_orb_act_mono(idx(jdet),6) = 1
else if (exc(0,1,2) == 2) then
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,2)) !!! a_a BETA
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(2,1,2)) !!! a^{\dagger}_{b} BETA
index_orb_act_mono(idx(jdet),3) = 2
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,2,2)) !!! a_c BETA
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(2,2,2)) !!! a^{\dagger}_{d} BETA
index_orb_act_mono(idx(jdet),6) = 2
endif
endif
enddo
! do jdet = 1, idx(0)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CASE OF THE MONO EXCITATIONS
! if(degree(jdet) == 1)then
! ! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator
! ! are connected by the presence of the perturbers determinants |det_tmp>
! aorb = index_orb_act_mono(idx(jdet),1) ! a_{aorb}
! borb = index_orb_act_mono(idx(jdet),2) ! a^{\dagger}_{borb}
! kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation
! ! the determinants Idet and Jdet interact throw the following operator
! ! | Jdet > = a^{\dagger}_{borb,kspin} a_{aorb, kspin} | Idet >
! accu_contrib = 0.d0
do ispin = 1, 2 ! you loop on all possible spin for the excitation
! a^{\dagger}_r a_{a} (ispin)
!!!! SECOND ORDER CONTRIBTIONS
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,jspin} a_{corb,jspin} a_{iorb,ispin} | Idet >
do jspin = 1, 2
if(ispin == 2 .and. jspin ==1)cycle
do b = 1, n_act_orb
do a = 1, n_act_orb
logical :: cycle_same_spin_second_order(2)
cycle_same_spin_second_order(1) = .False.
cycle_same_spin_second_order(2) = .False.
if(perturb_dets_phase(a,b,ispin,jspin).le.-10d0)cycle
if(ispin == jspin .and. vorb.le.rorb)then
cycle_same_spin_second_order(1) = .True.
endif
if(ispin == jspin .and. aorb.le.borb)then
cycle_same_spin_second_order(2) = .True.
endif
do inint = 1, N_int
det_tmp(inint,1) = perturb_dets(inint,1,a,b,ispin,jspin)
det_tmp(inint,2) = perturb_dets(inint,2,a,b,ispin,jspin)
enddo
do jdet = 1, idx(0)
! if(idx(jdet).gt.idet)cycle
do istate = 1, N_states
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij)
matrix_2p(idx(jdet),idet,istate) += hij * perturb_dets_hij(a,b,ispin,jspin) * delta_e_inv(a,b,ispin,jspin,istate)
enddo
enddo ! jdet
enddo ! b
enddo ! a
enddo ! jspin
enddo ! ispin
! else if (degree(jdet) == 0)then
!
! endif
! enddo !! jdet
enddo
enddo
enddo
end