mirror of
https://github.com/LCPQ/quantum_package
synced 2024-12-27 06:43:48 +01:00
340 lines
9.7 KiB
Fortran
340 lines
9.7 KiB
Fortran
subroutine i_O1_j(array,key_i,key_j,Nint,hij)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Returns <i|O1|j> where i and j are determinants
|
|
! and O1 is a ONE BODY OPERATOR
|
|
! array is the array of the mono electronic operator
|
|
! on the MO basis
|
|
END_DOC
|
|
integer, intent(in) :: Nint
|
|
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
|
double precision, intent(out) :: hij
|
|
double precision, intent(in) :: array(mo_tot_num,mo_tot_num)
|
|
|
|
integer :: exc(0:2,2,2)
|
|
integer :: degree
|
|
integer :: m,p
|
|
double precision :: diag_O1_mat_elem, phase
|
|
|
|
ASSERT (Nint > 0)
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num)
|
|
ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num)
|
|
ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num)
|
|
ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num)
|
|
|
|
hij = 0.d0
|
|
!DIR$ FORCEINLINE
|
|
call get_excitation_degree(key_i,key_j,degree,Nint)
|
|
select case (degree)
|
|
case (2)
|
|
hij = 0.d0
|
|
case (1)
|
|
call get_mono_excitation(key_i,key_j,exc,phase,Nint)
|
|
if (exc(0,1,1) == 1) then
|
|
! Mono alpha
|
|
m = exc(1,1,1)
|
|
p = exc(1,2,1)
|
|
else
|
|
! Mono beta
|
|
m = exc(1,1,2)
|
|
p = exc(1,2,2)
|
|
endif
|
|
hij = phase* array(m,p)
|
|
|
|
case (0)
|
|
hij = diag_O1_mat_elem(array,key_i,Nint)
|
|
end select
|
|
end
|
|
|
|
|
|
subroutine i_O1_psi(array,key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate
|
|
double precision, intent(in) :: array(mo_tot_num,mo_tot_num)
|
|
integer(bit_kind), intent(in) :: keys(Nint,2,Ndet)
|
|
integer(bit_kind), intent(in) :: key(Nint,2)
|
|
double precision, intent(in) :: coef(Ndet_max,Nstate)
|
|
double precision, intent(out) :: i_H_psi_array(Nstate)
|
|
|
|
integer :: i, ii,j
|
|
double precision :: phase
|
|
integer :: exc(0:2,2,2)
|
|
double precision :: hij
|
|
integer :: idx(0:Ndet)
|
|
BEGIN_DOC
|
|
! <key|O1|psi> for the various Nstates
|
|
! and O1 is a ONE BODY OPERATOR
|
|
! array is the array of the mono electronic operator
|
|
! on the MO basis
|
|
END_DOC
|
|
|
|
ASSERT (Nint > 0)
|
|
ASSERT (N_int == Nint)
|
|
ASSERT (Nstate > 0)
|
|
ASSERT (Ndet > 0)
|
|
ASSERT (Ndet_max >= Ndet)
|
|
i_H_psi_array = 0.d0
|
|
call filter_connected_mono(keys,key,Nint,Ndet,idx)
|
|
do ii=1,idx(0)
|
|
i = idx(ii)
|
|
!DIR$ FORCEINLINE
|
|
call i_O1_j(array,keys(1,1,i),key,Nint,hij)
|
|
do j = 1, Nstate
|
|
i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij
|
|
enddo
|
|
enddo
|
|
end
|
|
|
|
double precision function diag_O1_mat_elem(array,det_in,Nint)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes <i|O1|i>
|
|
END_DOC
|
|
integer,intent(in) :: Nint
|
|
integer(bit_kind),intent(in) :: det_in(Nint,2)
|
|
double precision, intent(in) :: array(mo_tot_num,mo_tot_num)
|
|
|
|
integer :: i, ispin,tmp
|
|
integer :: occ_det(Nint*bit_kind_size,2)
|
|
|
|
ASSERT (Nint > 0)
|
|
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
|
|
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
|
|
|
|
call bitstring_to_list(det_in(1,1), occ_det(1,1), tmp, Nint)
|
|
call bitstring_to_list(det_in(1,2), occ_det(1,2), tmp, Nint)
|
|
diag_O1_mat_elem = 0.d0
|
|
do ispin = 1, 2
|
|
do i = 1, elec_num_tab(ispin)
|
|
diag_O1_mat_elem += array(occ_det(i,ispin),occ_det(i,ispin))
|
|
enddo
|
|
enddo
|
|
end
|
|
|
|
|
|
subroutine i_O1_psi_alpha_beta(array,key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array)
|
|
use bitmasks
|
|
implicit none
|
|
integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate
|
|
double precision, intent(in) :: array(mo_tot_num,mo_tot_num)
|
|
integer(bit_kind), intent(in) :: keys(Nint,2,Ndet)
|
|
integer(bit_kind), intent(in) :: key(Nint,2)
|
|
double precision, intent(in) :: coef(Ndet_max,Nstate)
|
|
double precision, intent(out) :: i_H_psi_array(Nstate)
|
|
|
|
integer :: i, ii,j
|
|
double precision :: phase
|
|
integer :: exc(0:2,2,2)
|
|
double precision :: hij
|
|
integer :: idx(0:Ndet)
|
|
BEGIN_DOC
|
|
! <key|O1(alpha) - O1(beta)|psi> for the various Nstates
|
|
! and O1 is a ONE BODY OPERATOR
|
|
! array is the array of the mono electronic operator
|
|
! on the MO basis
|
|
END_DOC
|
|
|
|
ASSERT (Nint > 0)
|
|
ASSERT (N_int == Nint)
|
|
ASSERT (Nstate > 0)
|
|
ASSERT (Ndet > 0)
|
|
ASSERT (Ndet_max >= Ndet)
|
|
i_H_psi_array = 0.d0
|
|
call filter_connected_mono(keys,key,Nint,Ndet,idx)
|
|
do ii=1,idx(0)
|
|
i = idx(ii)
|
|
!DIR$ FORCEINLINE
|
|
call i_O1_j_alpha_beta(array,keys(1,1,i),key,Nint,hij)
|
|
do j = 1, Nstate
|
|
i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij
|
|
enddo
|
|
enddo
|
|
end
|
|
|
|
subroutine i_O1_j_alpha_beta(array,key_i,key_j,Nint,hij)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Returns <i|O1(alpha) - O1(beta)|j> where i and j are determinants
|
|
! and O1 is a ONE BODY OPERATOR
|
|
! array is the array of the mono electronic operator
|
|
! on the MO basis
|
|
END_DOC
|
|
integer, intent(in) :: Nint
|
|
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
|
|
double precision, intent(out) :: hij
|
|
double precision, intent(in) :: array(mo_tot_num,mo_tot_num)
|
|
|
|
integer :: exc(0:2,2,2)
|
|
integer :: degree
|
|
integer :: m,p
|
|
double precision :: diag_O1_mat_elem_alpha_beta, phase
|
|
|
|
ASSERT (Nint > 0)
|
|
ASSERT (Nint == N_int)
|
|
ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num)
|
|
ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num)
|
|
ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num)
|
|
ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num)
|
|
|
|
hij = 0.d0
|
|
!DIR$ FORCEINLINE
|
|
call get_excitation_degree(key_i,key_j,degree,Nint)
|
|
select case (degree)
|
|
case (2)
|
|
hij = 0.d0
|
|
case (1)
|
|
call get_mono_excitation(key_i,key_j,exc,phase,Nint)
|
|
if (exc(0,1,1) == 1) then
|
|
! Mono alpha
|
|
m = exc(1,1,1)
|
|
p = exc(1,2,1)
|
|
hij = phase* array(m,p)
|
|
else
|
|
! Mono beta
|
|
m = exc(1,1,2)
|
|
p = exc(1,2,2)
|
|
hij = -phase* array(m,p)
|
|
endif
|
|
|
|
case (0)
|
|
hij = diag_O1_mat_elem_alpha_beta(array,key_i,Nint)
|
|
end select
|
|
end
|
|
|
|
|
|
double precision function diag_O1_mat_elem_alpha_beta(array,det_in,Nint)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Computes <i|O1(alpha) -O1(beta)|i>
|
|
END_DOC
|
|
integer,intent(in) :: Nint
|
|
integer(bit_kind),intent(in) :: det_in(Nint,2)
|
|
double precision, intent(in) :: array(mo_tot_num,mo_tot_num)
|
|
|
|
integer :: i, ispin,tmp
|
|
integer :: occ_det(Nint*bit_kind_size,2)
|
|
|
|
ASSERT (Nint > 0)
|
|
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
|
|
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
|
|
|
|
call bitstring_to_list(det_in(1,1), occ_det(1,1), tmp, Nint)
|
|
call bitstring_to_list(det_in(1,2), occ_det(1,2), tmp, Nint)
|
|
diag_O1_mat_elem_alpha_beta = 0.d0
|
|
ispin = 1
|
|
do i = 1, elec_num_tab(ispin)
|
|
diag_O1_mat_elem_alpha_beta += array(occ_det(i,ispin),occ_det(i,ispin))
|
|
enddo
|
|
ispin = 2
|
|
do i = 1, elec_num_tab(ispin)
|
|
diag_O1_mat_elem_alpha_beta -= array(occ_det(i,ispin),occ_det(i,ispin))
|
|
enddo
|
|
end
|
|
|
|
subroutine filter_connected_mono(key1,key2,Nint,sze,idx)
|
|
use bitmasks
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Filters out the determinants that are not connected through PURE
|
|
!
|
|
! MONO EXCITATIONS OPERATORS (a^{\dagger}j a_i)
|
|
!
|
|
! returns the array idx which contains the index of the
|
|
!
|
|
! determinants in the array key1 that interact
|
|
!
|
|
! via some PURE MONO EXCITATIONS OPERATORS
|
|
!
|
|
! idx(0) is the number of determinants that interact with key1
|
|
END_DOC
|
|
integer, intent(in) :: Nint, sze
|
|
integer(bit_kind), intent(in) :: key1(Nint,2,sze)
|
|
integer(bit_kind), intent(in) :: key2(Nint,2)
|
|
integer, intent(out) :: idx(0:sze)
|
|
|
|
integer :: i,j,l
|
|
integer :: degree_x2
|
|
|
|
ASSERT (Nint > 0)
|
|
ASSERT (sze >= 0)
|
|
|
|
l=1
|
|
|
|
if (Nint==1) then
|
|
|
|
!DIR$ LOOP COUNT (1000)
|
|
do i=1,sze
|
|
degree_x2 = popcnt( xor( key1(1,1,i), key2(1,1))) &
|
|
+ popcnt( xor( key1(1,2,i), key2(1,2)))
|
|
if (degree_x2 > 3) then
|
|
cycle
|
|
else
|
|
idx(l) = i
|
|
l = l+1
|
|
endif
|
|
enddo
|
|
|
|
else if (Nint==2) then
|
|
|
|
!DIR$ LOOP COUNT (1000)
|
|
do i=1,sze
|
|
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
|
|
popcnt(xor( key1(2,1,i), key2(2,1))) + &
|
|
popcnt(xor( key1(1,2,i), key2(1,2))) + &
|
|
popcnt(xor( key1(2,2,i), key2(2,2)))
|
|
if (degree_x2 > 3) then
|
|
cycle
|
|
else
|
|
idx(l) = i
|
|
l = l+1
|
|
endif
|
|
enddo
|
|
|
|
else if (Nint==3) then
|
|
|
|
!DIR$ LOOP COUNT (1000)
|
|
do i=1,sze
|
|
degree_x2 = popcnt(xor( key1(1,1,i), key2(1,1))) + &
|
|
popcnt(xor( key1(1,2,i), key2(1,2))) + &
|
|
popcnt(xor( key1(2,1,i), key2(2,1))) + &
|
|
popcnt(xor( key1(2,2,i), key2(2,2))) + &
|
|
popcnt(xor( key1(3,1,i), key2(3,1))) + &
|
|
popcnt(xor( key1(3,2,i), key2(3,2)))
|
|
if (degree_x2 > 3) then
|
|
cycle
|
|
else
|
|
idx(l) = i
|
|
l = l+1
|
|
endif
|
|
enddo
|
|
|
|
else
|
|
|
|
!DIR$ LOOP COUNT (1000)
|
|
do i=1,sze
|
|
degree_x2 = 0
|
|
!DIR$ LOOP COUNT MIN(4)
|
|
do j=1,Nint
|
|
degree_x2 = degree_x2+ popcnt(xor( key1(j,1,i), key2(j,1))) +&
|
|
popcnt(xor( key1(j,2,i), key2(j,2)))
|
|
if (degree_x2 > 3) then
|
|
exit
|
|
endif
|
|
enddo
|
|
if (degree_x2 <= 3) then
|
|
idx(l) = i
|
|
l = l+1
|
|
endif
|
|
enddo
|
|
|
|
endif
|
|
idx(0) = l-1
|
|
end
|
|
|