10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-18 12:03:57 +01:00
quantum_package/src/Integrals_Monoelec/kin_ao_ints.irp.f
2015-05-12 11:05:07 +02:00

149 lines
5.1 KiB
Fortran

BEGIN_PROVIDER [ double precision, ao_deriv2_x,(ao_num_align,ao_num) ]
&BEGIN_PROVIDER [ double precision, ao_deriv2_y,(ao_num_align,ao_num) ]
&BEGIN_PROVIDER [ double precision, ao_deriv2_z,(ao_num_align,ao_num) ]
implicit none
integer :: i,j,n,l
double precision :: f
integer :: dim1
double precision :: overlap, overlap_y, overlap_z
double precision :: overlap_x0, overlap_y0, overlap_z0
double precision :: alpha, beta, c
double precision :: A_center(3), B_center(3)
integer :: power_A(3), power_B(3)
double precision :: d_a_2,d_2
dim1=100
BEGIN_DOC
! second derivatives matrix elements in the ao basis
! .. math::
!
! {\tt ao_deriv2_x} = \langle \chi_i(x,y,z) \frac{\partial^2}{\partial x^2} |\chi_j (x,y,z) \rangle
END_DOC
! -- Dummy call to provide everything
A_center(:) = 0.d0
B_center(:) = 1.d0
alpha = 1.d0
beta = .1d0
power_A = 1
power_B = 0
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,d_a_2,overlap_z,overlap,dim1)
! --
!$OMP PARALLEL DO SCHEDULE(GUIDED) &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(A_center,B_center,power_A,power_B,&
!$OMP overlap_y, overlap_z, overlap, &
!$OMP alpha, beta,i,j,c,d_a_2,d_2,deriv_tmp, &
!$OMP overlap_x0,overlap_y0,overlap_z0) &
!$OMP SHARED(nucl_coord,ao_power,ao_prim_num, &
!$OMP ao_deriv2_x,ao_deriv2_y,ao_deriv2_z,ao_num,ao_coef_normalized_ordered_transp,ao_nucl, &
!$OMP ao_expo_ordered_transp,dim1)
do j=1,ao_num
A_center(1) = nucl_coord( ao_nucl(j), 1 )
A_center(2) = nucl_coord( ao_nucl(j), 2 )
A_center(3) = nucl_coord( ao_nucl(j), 3 )
power_A(1) = ao_power( j, 1 )
power_A(2) = ao_power( j, 2 )
power_A(3) = ao_power( j, 3 )
!DEC$ VECTOR ALIGNED
!DEC$ VECTOR ALWAYS
do i= 1,ao_num
ao_deriv2_x(i,j)= 0.d0
ao_deriv2_y(i,j)= 0.d0
ao_deriv2_z(i,j)= 0.d0
B_center(1) = nucl_coord( ao_nucl(i), 1 )
B_center(2) = nucl_coord( ao_nucl(i), 2 )
B_center(3) = nucl_coord( ao_nucl(i), 3 )
power_B(1) = ao_power( i, 1 )
power_B(2) = ao_power( i, 2 )
power_B(3) = ao_power( i, 3 )
do n = 1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(n,j)
!DEC$ VECTOR ALIGNED
do l = 1, ao_prim_num(i)
beta = ao_expo_ordered_transp(l,i)
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_x0,overlap_y0,overlap_z0,overlap,dim1)
c = ao_coef_normalized_ordered_transp(n,j) * ao_coef_normalized_ordered_transp(l,i)
! if (abs(c) < 1.d-8) then
! cycle
! endif
power_A(1) = power_A(1)-2
if (power_A(1)>-1) then
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,d_a_2,overlap_y,overlap_z,overlap,dim1)
else
d_a_2 = 0.d0
endif
power_A(1) = power_A(1)+4
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,d_2,overlap_y,overlap_z,overlap,dim1)
power_A(1) = power_A(1)-2
double precision :: deriv_tmp
deriv_tmp = (-2.d0 * alpha * (2.d0 * power_A(1) +1.d0) * overlap_x0 &
+power_A(1) * (power_A(1)-1.d0) * d_a_2 &
+4.d0 * alpha * alpha * d_2 )*overlap_y0*overlap_z0
ao_deriv2_x(i,j) += c*deriv_tmp
power_A(2) = power_A(2)-2
if (power_A(2)>-1) then
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,d_a_2,overlap_z,overlap,dim1)
else
d_a_2 = 0.d0
endif
power_A(2) = power_A(2)+4
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,d_2,overlap_z,overlap,dim1)
power_A(2) = power_A(2)-2
deriv_tmp = (-2.d0 * alpha * (2.d0 * power_A(2) +1.d0 ) * overlap_y0 &
+power_A(2) * (power_A(2)-1.d0) * d_a_2 &
+4.d0 * alpha * alpha * d_2 )*overlap_x0*overlap_z0
ao_deriv2_y(i,j) += c*deriv_tmp
power_A(3) = power_A(3)-2
if (power_A(3)>-1) then
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,overlap_z,d_a_2,overlap,dim1)
else
d_a_2 = 0.d0
endif
power_A(3) = power_A(3)+4
call overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,power_B,overlap_y,overlap_z,d_2,overlap,dim1)
power_A(3) = power_A(3)-2
deriv_tmp = (-2.d0 * alpha * (2.d0 * power_A(3) +1.d0 ) * overlap_z0 &
+power_A(3) * (power_A(3)-1.d0) * d_a_2 &
+4.d0 * alpha * alpha * d_2 )*overlap_x0*overlap_y0
ao_deriv2_z(i,j) += c*deriv_tmp
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
BEGIN_PROVIDER [double precision, ao_kinetic_integral, (ao_num_align,ao_num)]
implicit none
BEGIN_DOC
! array of the priminitve basis kinetic integrals
! \langle \chi_i |\hat{T}| \chi_j \rangle
END_DOC
integer :: i,j,k,l
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP PRIVATE(i,j) &
!$OMP SHARED(ao_num, ao_num_align, ao_kinetic_integral,ao_deriv2_x,ao_deriv2_y,ao_deriv2_z)
do j = 1, ao_num
!DEC$ VECTOR ALWAYS
!DEC$ VECTOR ALIGNED
do i = 1, ao_num
ao_kinetic_integral(i,j) = -0.5d0 * (ao_deriv2_x(i,j) + ao_deriv2_y(i,j) + ao_deriv2_z(i,j) )
enddo
do i = ao_num +1,ao_num_align
ao_kinetic_integral(i,j) = 0.d0
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER