mirror of
https://github.com/LCPQ/quantum_package
synced 2024-12-25 05:43:47 +01:00
.. | ||
tests | ||
ASSUMPTIONS.rst | ||
integration.irp.f | ||
LinearAlgebra.irp.f | ||
Makefile | ||
map_module.f90 | ||
NEEDED_MODULES | ||
one_e_integration.irp.f | ||
README.rst | ||
sort.irp.f | ||
util.irp.f |
============ Utils Module ============ Contains general purpose utilities. Documentation ============= .. Do not edit this section. It was auto-generated from the .. NEEDED_MODULES file. `apply_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L146>`_ Apply the rotation found by find_rotation `find_rotation <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L127>`_ Find A.C = B `get_pseudo_inverse <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L73>`_ Find C = A^-1 `lapack_diag <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L158>`_ Diagonalize matrix H `ortho_lowdin <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/LinearAlgebra.irp.f#L1>`_ Compute U.S^-1/2 canonical orthogonalization `add_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L243>`_ Add two polynomials D(t) =! D(t) +( B(t)+C(t)) `add_poly_multiply <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L271>`_ Add a polynomial multiplied by a constant D(t) =! D(t) +( cst * B(t)) `f_integral <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L345>`_ function that calculates the following integral \int_{\-infty}^{+\infty} x^n \exp(-p x^2) dx `gaussian_product <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L121>`_ Gaussian product in 1D. e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} `gaussian_product_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L163>`_ Gaussian product in 1D. e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} `give_explicit_poly_and_gaussian <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L46>`_ Transforms the product of (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) into fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 ) * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 ) * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 ) `give_explicit_poly_and_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L1>`_ Transform the product of (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) into fact_k (x-x_P)^iorder(1) (y-y_P)^iorder(2) (z-z_P)^iorder(3) exp(-p(r-P)^2) `hermite <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L468>`_ Hermite polynomial `multiply_poly <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L201>`_ Multiply two polynomials D(t) =! D(t) +( B(t)*C(t)) `recentered_poly2 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L300>`_ Recenter two polynomials `rint <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L373>`_ .. math:: .br \int_0^1 dx \exp(-p x^2) x^n .br `rint1 <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L524>`_ Standard version of rint `rint_large_n <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L493>`_ Version of rint for large values of n `rint_sum <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/integration.irp.f#L417>`_ Needed for the calculation of two-electron integrals. `overlap_gaussian_x <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L1>`_ .. math:: .br \sum_{-infty}^{+infty} (x-A_x)^ax (x-B_x)^bx exp(-alpha(x-A_x)^2) exp(-beta(x-B_X)^2) dx .br `overlap_gaussian_xyz <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L37>`_ .. math:: .br S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\ S = S_x S_y S_z .br `overlap_x_abs <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/one_e_integration.irp.f#L99>`_ .. math :: .br \int_{-infty}^{+infty} (x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) dx .br `align_double <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L65>`_ Compute 1st dimension such that it is aligned for vectorization. `all_utils <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L1>`_ Dummy provider to provide all utils `binom <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L47>`_ Binomial coefficients `binom_func <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L16>`_ .. math :: .br \frac{i!}{j!(i-j)!} .br `binom_transp <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L48>`_ Binomial coefficients `dble_fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L124>`_ n!! `fact <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L80>`_ n! `fact_inv <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L112>`_ 1/n! `inv_int <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L171>`_ 1/i `normalize <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L272>`_ Normalizes vector u u is expected to be aligned in memory. `nproc <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L197>`_ Number of current OpenMP threads `u_dot_u <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L244>`_ Compute <u|u> u is expected to be aligned in memory. `u_dot_v <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L213>`_ Compute <u|v> u and v are expected to be aligned in memory. `wall_time <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L182>`_ The equivalent of cpu_time, but for the wall time. `write_git_log <http://github.com/LCPQ/quantum_package/tree/master/src/Utils/util.irp.f#L157>`_ Write the last git commit in file iunit.