10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-07 06:33:53 +01:00
quantum_package/src/Dets/slater_rules.irp.f
2014-05-21 16:37:54 +02:00

838 lines
25 KiB
Fortran

subroutine get_excitation_degree(key1,key2,degree,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Returns the excitation degree between two determinants
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key1(Nint,2)
integer(bit_kind), intent(in) :: key2(Nint,2)
integer, intent(out) :: degree
integer :: l
ASSERT (Nint > 0)
degree = popcnt(xor( key1(1,1), key2(1,1))) + &
popcnt(xor( key1(1,2), key2(1,2)))
!DEC$ NOUNROLL
do l=2,Nint
degree = degree+ popcnt(xor( key1(l,1), key2(l,1))) + &
popcnt(xor( key1(l,2), key2(l,2)))
enddo
ASSERT (degree >= 0)
degree = ishft(degree,-1)
end
subroutine get_excitation(det1,det2,exc,degree,phase,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Returns the excitation operators between two determinants and the phase
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(in) :: det2(Nint,2)
integer, intent(out) :: exc(0:2,2,2)
integer, intent(out) :: degree
double precision, intent(out) :: phase
! exc(number,hole/particle,spin)
! ex :
! exc(0,1,1) = number of holes alpha
! exc(0,2,1) = number of particle alpha
! exc(0,2,2) = number of particle beta
! exc(1,2,1) = first particle alpha
! exc(1,1,1) = first hole alpha
! exc(1,2,2) = first particle beta
! exc(1,1,2) = first hole beta
ASSERT (Nint > 0)
!DIR$ FORCEINLINE
call get_excitation_degree(det1,det2,degree,Nint)
select case (degree)
case (3:)
degree = -1
return
case (2)
call get_double_excitation(det1,det2,exc,phase,Nint)
return
case (1)
call get_mono_excitation(det1,det2,exc,phase,Nint)
return
case(0)
return
end select
end
subroutine decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
use bitmasks
implicit none
BEGIN_DOC
! Decodes the exc arrays returned by get_excitation.
! h1,h2 : Holes
! p1,p2 : Particles
! s1,s2 : Spins (1:alpha, 2:beta)
! degree : Degree of excitation
END_DOC
integer, intent(in) :: exc(0:2,2,2),degree
integer, intent(out) :: h1,h2,p1,p2,s1,s2
ASSERT (degree > 0)
ASSERT (degree < 3)
select case(degree)
case(2)
if (exc(0,1,1) == 2) then
h1 = exc(1,1,1)
h2 = exc(2,1,1)
p1 = exc(1,2,1)
p2 = exc(2,2,1)
s1 = 1
s2 = 1
else if (exc(0,1,2) == 2) then
h1 = exc(1,1,2)
h2 = exc(2,1,2)
p1 = exc(1,2,2)
p2 = exc(2,2,2)
s1 = 2
s2 = 2
else
h1 = exc(1,1,1)
h2 = exc(1,1,2)
p1 = exc(1,2,1)
p2 = exc(1,2,2)
s1 = 1
s2 = 2
endif
case(1)
if (exc(0,1,1) == 1) then
h1 = exc(1,1,1)
h2 = 0
p1 = exc(1,2,1)
p2 = 0
s1 = 1
s2 = 0
else
h1 = exc(1,1,2)
h2 = 0
p1 = exc(1,2,2)
p2 = 0
s1 = 2
s2 = 0
endif
case(0)
h1 = 0
p1 = 0
h2 = 0
p2 = 0
s1 = 0
s2 = 0
end select
end
subroutine get_double_excitation(det1,det2,exc,phase,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Returns the two excitation operators between two doubly excited determinants and the phase
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(in) :: det2(Nint,2)
integer, intent(out) :: exc(0:2,2,2)
double precision, intent(out) :: phase
integer :: tz
integer :: l, ispin, idx_hole, idx_particle, ishift
integer :: nperm
integer :: i,j,k,m,n
integer :: high, low
integer :: a,b,c,d
integer(bit_kind) :: hole, particle, tmp
double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /)
ASSERT (Nint > 0)
nperm = 0
exc(0,1,1) = 0
exc(0,2,1) = 0
exc(0,1,2) = 0
exc(0,2,2) = 0
do ispin = 1,2
idx_particle = 0
idx_hole = 0
ishift = 1-bit_kind_size
do l=1,Nint
ishift = ishift + bit_kind_size
if (det1(l,ispin) == det2(l,ispin)) then
cycle
endif
tmp = xor( det1(l,ispin), det2(l,ispin) )
particle = iand(tmp, det2(l,ispin))
hole = iand(tmp, det1(l,ispin))
do while (particle /= 0_bit_kind)
tz = trailz(particle)
idx_particle = idx_particle + 1
exc(0,2,ispin) = exc(0,2,ispin) + 1
exc(idx_particle,2,ispin) = tz+ishift
particle = iand(particle,particle-1_bit_kind)
enddo
if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin)==2
exit
endif
do while (hole /= 0_bit_kind)
tz = trailz(hole)
idx_hole = idx_hole + 1
exc(0,1,ispin) = exc(0,1,ispin) + 1
exc(idx_hole,1,ispin) = tz+ishift
hole = iand(hole,hole-1_bit_kind)
enddo
if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin)
exit
endif
enddo
! TODO : Voir si il faut sortir i,n,k,m du case.
select case (exc(0,1,ispin))
case(0)
cycle
case(1)
low = min(exc(1,1,ispin), exc(1,2,ispin))
high = max(exc(1,1,ispin), exc(1,2,ispin))
ASSERT (low > 0)
j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint)
n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size)
ASSERT (high > 0)
k = ishft(high-1,-bit_kind_shift)+1
m = iand(high,bit_kind_size-1)
if (j==k) then
nperm = nperm + popcnt(iand(det1(j,ispin), &
iand( ibset(0_bit_kind,m-1)-1_bit_kind, &
ibclr(-1_bit_kind,n)+1_bit_kind ) ))
else
nperm = nperm + popcnt(iand(det1(k,ispin), &
ibset(0_bit_kind,m-1)-1_bit_kind)) + &
popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind))
do i=j+1,k-1
nperm = nperm + popcnt(det1(i,ispin))
end do
endif
case (2)
do i=1,2
low = min(exc(i,1,ispin), exc(i,2,ispin))
high = max(exc(i,1,ispin), exc(i,2,ispin))
ASSERT (low > 0)
j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint)
n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size)
ASSERT (high > 0)
k = ishft(high-1,-bit_kind_shift)+1
m = iand(high,bit_kind_size-1)
if (j==k) then
nperm = nperm + popcnt(iand(det1(j,ispin), &
iand( ibset(0_bit_kind,m-1)-1_bit_kind, &
ibclr(-1_bit_kind,n)+1_bit_kind ) ))
else
nperm = nperm + popcnt(iand(det1(k,ispin), &
ibset(0_bit_kind,m-1)-1_bit_kind)) + &
popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind))
do l=j+1,k-1
nperm = nperm + popcnt(det1(l,ispin))
end do
endif
enddo
a = min(exc(1,1,ispin), exc(1,2,ispin))
b = max(exc(1,1,ispin), exc(1,2,ispin))
c = min(exc(2,1,ispin), exc(2,2,ispin))
d = max(exc(2,1,ispin), exc(2,2,ispin))
if (c>a .and. c<b .and. d>b) then
nperm = nperm + 1
endif
exit
end select
enddo
phase = phase_dble(iand(nperm,1))
end
subroutine get_mono_excitation(det1,det2,exc,phase,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Returns the excitation operator between two singly excited determinants and the phase
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: det1(Nint,2)
integer(bit_kind), intent(in) :: det2(Nint,2)
integer, intent(out) :: exc(0:2,2,2)
double precision, intent(out) :: phase
integer :: tz
integer :: l, ispin, idx_hole, idx_particle, ishift
integer :: nperm
integer :: i,j,k,m,n
integer :: high, low
integer :: a,b,c,d
integer(bit_kind) :: hole, particle, tmp
double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /)
ASSERT (Nint > 0)
nperm = 0
exc(0,1,1) = 0
exc(0,2,1) = 0
exc(0,1,2) = 0
exc(0,2,2) = 0
do ispin = 1,2
ishift = 1-bit_kind_size
do l=1,Nint
ishift = ishift + bit_kind_size
if (det1(l,ispin) == det2(l,ispin)) then
cycle
endif
tmp = xor( det1(l,ispin), det2(l,ispin) )
particle = iand(tmp, det2(l,ispin))
hole = iand(tmp, det1(l,ispin))
if (particle /= 0_bit_kind) then
tz = trailz(particle)
exc(0,2,ispin) = 1
exc(1,2,ispin) = tz+ishift
endif
if (hole /= 0_bit_kind) then
tz = trailz(hole)
exc(0,1,ispin) = 1
exc(1,1,ispin) = tz+ishift
endif
if ( iand(exc(0,1,ispin),exc(0,2,ispin)) /= 1) then ! exc(0,1,ispin)/=1 and exc(0,2,ispin) /= 1
cycle
endif
low = min(exc(1,1,ispin),exc(1,2,ispin))
high = max(exc(1,1,ispin),exc(1,2,ispin))
ASSERT (low > 0)
j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint)
n = iand(low,bit_kind_size-1) ! mod(low,bit_kind_size)
ASSERT (high > 0)
k = ishft(high-1,-bit_kind_shift)+1
m = iand(high,bit_kind_size-1)
if (j==k) then
nperm = popcnt(iand(det1(j,ispin), &
iand(ibset(0_bit_kind,m-1)-1_bit_kind,ibclr(-1_bit_kind,n)+1_bit_kind)))
else
nperm = nperm + popcnt(iand(det1(k,ispin),ibset(0_bit_kind,m-1)-1_bit_kind)) +&
popcnt(iand(det1(j,ispin),ibclr(-1_bit_kind,n)+1_bit_kind))
do i=j+1,k-1
nperm = nperm + popcnt(det1(i,ispin))
end do
endif
phase = phase_dble(iand(nperm,1))
return
enddo
enddo
end
subroutine i_H_j(key_i,key_j,Nint,hij)
use bitmasks
implicit none
BEGIN_DOC
! Returns <i|H|j> where i and j are determinants
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2)
double precision, intent(out) :: hij
integer :: exc(0:2,2,2)
integer :: degree
double precision :: get_mo_bielec_integral
integer :: m,n,p,q
integer :: i,j,k
integer :: occ(Nint*bit_kind_size,2)
double precision :: diag_H_mat_elem, phase,phase_2
integer :: n_occ_alpha, n_occ_beta
logical :: has_mipi(Nint*bit_kind_size)
double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size)
PROVIDE mo_bielec_integrals_in_map
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num)
ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num)
ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num)
ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num)
hij = 0.d0
!DEC$ FORCEINLINE
call get_excitation_degree(key_i,key_j,degree,Nint)
select case (degree)
case (2)
call get_double_excitation(key_i,key_j,exc,phase,Nint)
if (exc(0,1,1) == 1) then
! Mono alpha, mono beta
hij = phase*get_mo_bielec_integral( &
exc(1,1,1), &
exc(1,1,2), &
exc(1,2,1), &
exc(1,2,2) ,mo_integrals_map)
else if (exc(0,1,1) == 2) then
! Double alpha
hij = phase*(get_mo_bielec_integral( &
exc(1,1,1), &
exc(2,1,1), &
exc(1,2,1), &
exc(2,2,1) ,mo_integrals_map) - &
get_mo_bielec_integral( &
exc(1,1,1), &
exc(2,1,1), &
exc(2,2,1), &
exc(1,2,1) ,mo_integrals_map) )
else if (exc(0,1,2) == 2) then
! Double beta
hij = phase*(get_mo_bielec_integral( &
exc(1,1,2), &
exc(2,1,2), &
exc(1,2,2), &
exc(2,2,2) ,mo_integrals_map) - &
get_mo_bielec_integral( &
exc(1,1,2), &
exc(2,1,2), &
exc(2,2,2), &
exc(1,2,2) ,mo_integrals_map) )
endif
case (1)
call get_mono_excitation(key_i,key_j,exc,phase,Nint)
call bitstring_to_list(key_i(1,1), occ(1,1), n_occ_alpha, Nint)
call bitstring_to_list(key_i(1,2), occ(1,2), n_occ_beta, Nint)
has_mipi = .False.
if (exc(0,1,1) == 1) then
! Mono alpha
m = exc(1,1,1)
p = exc(1,2,1)
do k = 1, elec_alpha_num
i = occ(k,1)
if (.not.has_mipi(i)) then
mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map)
miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map)
has_mipi(i) = .True.
endif
enddo
do k = 1, elec_beta_num
i = occ(k,2)
if (.not.has_mipi(i)) then
mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map)
has_mipi(i) = .True.
endif
enddo
do k = 1, elec_alpha_num
hij = hij + mipi(occ(k,1)) - miip(occ(k,1))
enddo
do k = 1, elec_beta_num
hij = hij + mipi(occ(k,2))
enddo
else
! Mono beta
m = exc(1,1,2)
p = exc(1,2,2)
do k = 1, elec_beta_num
i = occ(k,2)
if (.not.has_mipi(i)) then
mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map)
miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map)
has_mipi(i) = .True.
endif
enddo
do k = 1, elec_alpha_num
i = occ(k,1)
if (.not.has_mipi(i)) then
mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map)
has_mipi(i) = .True.
endif
enddo
do k = 1, elec_alpha_num
hij = hij + mipi(occ(k,1))
enddo
do k = 1, elec_beta_num
hij = hij + mipi(occ(k,2)) - miip(occ(k,2))
enddo
endif
hij = phase*(hij + mo_mono_elec_integral(m,p))
case (0)
hij = diag_H_mat_elem(key_i,Nint)
end select
end
subroutine i_H_psi(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array)
use bitmasks
implicit none
integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate
integer(bit_kind), intent(in) :: keys(Nint,2,Ndet)
integer(bit_kind), intent(in) :: key(Nint,2)
double precision, intent(in) :: coef(Ndet_max,Nstate)
double precision, intent(out) :: i_H_psi_array(Nstate)
integer :: i, ii,j
double precision :: phase
integer :: exc(0:2,2,2)
double precision :: hij
integer :: idx(0:Ndet)
ASSERT (Nint > 0)
ASSERT (N_int == Nint)
ASSERT (Nstate > 0)
ASSERT (Ndet > 0)
ASSERT (Ndet_max >= Ndet)
i_H_psi_array = 0.d0
call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx)
do ii=1,idx(0)
i = idx(ii)
!DEC$ FORCEINLINE
call i_H_j(keys(1,1,i),key,Nint,hij)
do j = 1, Nstate
i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij
enddo
print *, 'x', coef(i,1), hij, i_H_psi_array(1)
enddo
end
subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx)
use bitmasks
implicit none
BEGIN_DOC
! Applies get_excitation_degree to an array of determinants
END_DOC
integer, intent(in) :: Nint, sze
integer(bit_kind), intent(in) :: key1(Nint,2,sze)
integer(bit_kind), intent(in) :: key2(Nint,2)
integer, intent(out) :: degree(sze)
integer, intent(out) :: idx(0:sze)
integer :: i,l
ASSERT (Nint > 0)
ASSERT (sze > 0)
l=1
if (Nint==1) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree(l) = ishft(popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))),-1)
if (degree(l) < 3) then
idx(l) = i
l = l+1
endif
enddo
else if (Nint==2) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree(l) = ishft(popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))) + &
popcnt(xor( key1(2,1,i), key2(2,1))) + &
popcnt(xor( key1(2,2,i), key2(2,2))),-1)
if (degree(l) < 3) then
idx(l) = i
l = l+1
endif
enddo
else if (Nint==3) then
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree(l) = ishft( popcnt(xor( key1(1,1,i), key2(1,1))) + &
popcnt(xor( key1(1,2,i), key2(1,2))) + &
popcnt(xor( key1(2,1,i), key2(2,1))) + &
popcnt(xor( key1(2,2,i), key2(2,2))) + &
popcnt(xor( key1(3,1,i), key2(3,1))) + &
popcnt(xor( key1(3,2,i), key2(3,2))),-1)
if (degree(l) < 3) then
idx(l) = i
l = l+1
endif
enddo
else
!DIR$ LOOP COUNT (1000)
do i=1,sze
degree(l) = 0
!DEC$ LOOP COUNT MIN(4)
do l=1,Nint
degree(l) = degree(l)+ popcnt(xor( key1(l,1,i), key2(l,1))) +&
popcnt(xor( key1(l,2,i), key2(l,2)))
enddo
degree(l) = ishft(degree(l),-1)
if (degree(l) < 3) then
idx(l) = i
l = l+1
endif
enddo
endif
idx(0) = l-1
end
double precision function diag_H_mat_elem(det_in,Nint)
implicit none
BEGIN_DOC
! Computes <i|H|i>
END_DOC
integer,intent(in) :: Nint
integer(bit_kind),intent(in) :: det_in(Nint,2)
integer(bit_kind) :: hole(Nint,2)
integer(bit_kind) :: particle(Nint,2)
integer :: i, nexc(2), ispin
integer :: occ_particle(Nint*bit_kind_size,2)
integer :: occ_hole(Nint*bit_kind_size,2)
integer(bit_kind) :: det_tmp(Nint,2)
integer :: na, nb
ASSERT (Nint > 0)
ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num)
ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num)
nexc(1) = 0
nexc(2) = 0
do i=1,Nint
hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1))
hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2))
particle(i,1) = iand(hole(i,1),det_in(i,1))
particle(i,2) = iand(hole(i,2),det_in(i,2))
hole(i,1) = iand(hole(i,1),ref_bitmask(i,1))
hole(i,2) = iand(hole(i,2),ref_bitmask(i,2))
nexc(1) += popcnt(hole(i,1))
nexc(2) += popcnt(hole(i,2))
enddo
diag_H_mat_elem = ref_bitmask_energy
if (nexc(1)+nexc(2) == 0) then
return
endif
!call debug_det(det_in,Nint)
integer :: tmp
call bitstring_to_list(particle(1,1), occ_particle(1,1), tmp, Nint)
ASSERT (tmp == nexc(1))
call bitstring_to_list(particle(1,2), occ_particle(1,2), tmp, Nint)
ASSERT (tmp == nexc(2))
call bitstring_to_list(hole(1,1), occ_hole(1,1), tmp, Nint)
ASSERT (tmp == nexc(1))
call bitstring_to_list(hole(1,2), occ_hole(1,2), tmp, Nint)
ASSERT (tmp == nexc(2))
det_tmp = ref_bitmask
do ispin=1,2
na = elec_num_tab(ispin)
nb = elec_num_tab(iand(ispin,1)+1)
do i=1,nexc(ispin)
!DIR$ FORCEINLINE
call ac_operator( occ_particle(i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb)
!DIR$ FORCEINLINE
call a_operator ( occ_hole (i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb)
enddo
enddo
end
subroutine a_operator(iorb,ispin,key,hjj,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Needed for diag_H_mat_elem
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hjj
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i
ASSERT (iorb > 0)
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
k = ishft(iorb-1,-bit_kind_shift)+1
ASSERT (k > 0)
l = iorb - ishft(k-1,bit_kind_shift)-1
key(k,ispin) = ibclr(key(k,ispin),l)
other_spin = iand(ispin,1)+1
!DIR$ FORCEINLINE
call get_occ_from_key(key,occ,Nint)
na -= 1
hjj -= mo_mono_elec_integral(iorb,iorb)
! Same spin
do i=1,na
hjj -= mo_bielec_integral_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i=1,nb
hjj -= mo_bielec_integral_jj(occ(i,other_spin),iorb)
enddo
end
subroutine ac_operator(iorb,ispin,key,hjj,Nint,na,nb)
use bitmasks
implicit none
BEGIN_DOC
! Needed for diag_H_mat_elem
END_DOC
integer, intent(in) :: iorb, ispin, Nint
integer, intent(inout) :: na, nb
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hjj
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i
ASSERT (iorb > 0)
ASSERT (ispin > 0)
ASSERT (ispin < 3)
ASSERT (Nint > 0)
integer :: tmp
!DIR$ FORCEINLINE
call bitstring_to_list(key(1,1), occ(1,1), tmp, Nint)
ASSERT (tmp == elec_alpha_num)
!DIR$ FORCEINLINE
call bitstring_to_list(key(1,2), occ(1,2), tmp, Nint)
ASSERT (tmp == elec_beta_num)
k = ishft(iorb-1,-bit_kind_shift)+1
ASSERT (k > 0)
l = iorb - ishft(k-1,bit_kind_shift)-1
key(k,ispin) = ibset(key(k,ispin),l)
other_spin = iand(ispin,1)+1
hjj += mo_mono_elec_integral(iorb,iorb)
! Same spin
do i=1,na
hjj += mo_bielec_integral_jj_anti(occ(i,ispin),iorb)
enddo
! Opposite spin
do i=1,nb
hjj += mo_bielec_integral_jj(occ(i,other_spin),iorb)
enddo
na += 1
end
subroutine get_occ_from_key(key,occ,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Returns a list of occupation numbers from a bitstring
END_DOC
integer(bit_kind), intent(in) :: key(Nint,2)
integer , intent(in) :: Nint
integer , intent(out) :: occ(Nint*bit_kind_size,2)
integer :: tmp
call bitstring_to_list(key(1,1), occ(1,1), tmp, Nint)
call bitstring_to_list(key(1,2), occ(1,2), tmp, Nint)
end
subroutine H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = H|u_0>
!
! n : number of determinants
!
! H_jj : array of <j|H|j>
END_DOC
integer, intent(in) :: n,Nint
double precision, intent(out) :: v_0(n)
double precision, intent(in) :: u_0(n)
double precision, intent(in) :: H_jj(n)
integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n)
integer, allocatable :: idx(:)
double precision :: hij
double precision, allocatable :: vt(:)
integer :: i,j,k,l, jj
integer :: i0, j0
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
ASSERT (n>0)
PROVIDE ref_bitmask_energy
integer, parameter :: block_size = 157
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,hij,j,k,idx,jj,vt) SHARED(n,H_jj,u_0,keys_tmp,Nint)&
!$OMP SHARED(v_0)
!$OMP DO SCHEDULE(static)
do i=1,n
v_0(i) = H_jj(i) * u_0(i)
enddo
!$OMP END DO
allocate(idx(0:n), vt(n))
Vt = 0.d0
!$OMP DO SCHEDULE(guided)
do i=1,n
call filter_connected(keys_tmp(1,1,1),keys_tmp(1,1,i),Nint,i-1,idx)
do jj=1,idx(0)
j = idx(jj)
call i_H_j(keys_tmp(1,1,j),keys_tmp(1,1,i),Nint,hij)
vt (i) = vt (i) + hij*u_0(j)
vt (j) = vt (j) + hij*u_0(i)
enddo
enddo
!$OMP END DO
!$OMP CRITICAL
do i=1,n
v_0(i) = v_0(i) + vt(i)
enddo
!$OMP END CRITICAL
deallocate(idx,vt)
!$OMP END PARALLEL
end