mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-03 18:16:12 +01:00
ca973a1e92
This reverts commit 94f01c0892
.
959 lines
39 KiB
Fortran
959 lines
39 KiB
Fortran
subroutine give_2h1p_contrib(matrix_2h1p)
|
|
use bitmasks
|
|
implicit none
|
|
double precision , intent(inout) :: matrix_2h1p(N_det,N_det,*)
|
|
integer :: i,j,r,a,b
|
|
integer :: iorb, jorb, rorb, aorb, borb
|
|
integer :: ispin,jspin
|
|
integer :: idet,jdet
|
|
integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,2,2)
|
|
double precision :: perturb_dets_phase(n_act_orb,2,2)
|
|
double precision :: perturb_dets_hij(n_act_orb,2,2)
|
|
double precision :: coef_perturb_from_idet(n_act_orb,2,2,N_states)
|
|
integer :: inint
|
|
integer :: elec_num_tab_local(2),acu_elec
|
|
integer(bit_kind) :: det_tmp(N_int,2)
|
|
integer :: exc(0:2,2,2)
|
|
integer :: accu_elec
|
|
double precision :: get_mo_bielec_integral
|
|
double precision :: active_int(n_act_orb,2)
|
|
double precision :: hij,phase
|
|
!matrix_2h1p = 0.d0
|
|
|
|
elec_num_tab_local = 0
|
|
do inint = 1, N_int
|
|
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
|
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
|
enddo
|
|
do i = 1, n_inact_orb ! First inactive
|
|
iorb = list_inact(i)
|
|
do j = 1, n_inact_orb ! Second inactive
|
|
jorb = list_inact(j)
|
|
do r = 1, n_virt_orb ! First virtual
|
|
rorb = list_virt(r)
|
|
! take all the integral you will need for i,j,r fixed
|
|
do a = 1, n_act_orb
|
|
aorb = list_act(a)
|
|
active_int(a,1) = get_mo_bielec_integral(iorb,jorb,rorb,aorb,mo_integrals_map) ! direct
|
|
active_int(a,2) = get_mo_bielec_integral(iorb,jorb,aorb,rorb,mo_integrals_map) ! exchange
|
|
enddo
|
|
|
|
integer :: degree(N_det)
|
|
integer :: idx(0:N_det)
|
|
double precision :: delta_e(n_act_orb,2,N_states)
|
|
integer :: istate
|
|
integer :: index_orb_act_mono(N_det,3)
|
|
|
|
do idet = 1, N_det
|
|
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
do jspin = 1, 2 ! spin of the couple z-a^dagger (j,a)
|
|
if(ispin == jspin .and. iorb.le.jorb)cycle ! condition not to double count
|
|
do a = 1, n_act_orb ! First active
|
|
aorb = list_act(a)
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = psi_det(inint,1,idet)
|
|
det_tmp(inint,2) = psi_det(inint,2,idet)
|
|
enddo
|
|
! Do the excitation inactive -- > virtual
|
|
call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin
|
|
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
|
|
|
|
! Do the excitation inactive -- > active
|
|
call clear_bit_to_integer(jorb,det_tmp(1,jspin),N_int) ! hole in "jorb" of spin Jspin
|
|
call set_bit_to_integer(aorb,det_tmp(1,jspin),N_int) ! particle in "aorb" of spin Jspin
|
|
|
|
! Check if the excitation is possible or not on psi_det(idet)
|
|
accu_elec= 0
|
|
do inint = 1, N_int
|
|
accu_elec+= popcnt(det_tmp(inint,jspin))
|
|
enddo
|
|
if(accu_elec .ne. elec_num_tab_local(jspin))then
|
|
perturb_dets_phase(a,jspin,ispin) = 0.0
|
|
perturb_dets_hij(a,jspin,ispin) = 0.d0
|
|
do istate = 1, N_states
|
|
coef_perturb_from_idet(a,jspin,ispin,istate) = 0.d0
|
|
enddo
|
|
cycle
|
|
endif
|
|
do inint = 1, N_int
|
|
perturb_dets(inint,1,a,jspin,ispin) = det_tmp(inint,1)
|
|
perturb_dets(inint,2,a,jspin,ispin) = det_tmp(inint,2)
|
|
enddo
|
|
call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int)
|
|
perturb_dets_phase(a,jspin,ispin) = phase
|
|
do istate = 1, N_states
|
|
delta_e(a,jspin,istate) = one_creat(a,jspin,istate) &
|
|
- fock_virt_total_spin_trace(rorb,istate) &
|
|
+ fock_core_inactive_total_spin_trace(iorb,istate) &
|
|
+ fock_core_inactive_total_spin_trace(jorb,istate)
|
|
enddo
|
|
if(ispin == jspin)then
|
|
perturb_dets_hij(a,jspin,ispin) = phase * (active_int(a,2) - active_int(a,1) )
|
|
else
|
|
perturb_dets_hij(a,jspin,ispin) = phase * active_int(a,1)
|
|
endif
|
|
!!!!!!!!!!!!!!!!!!!!!1 Computation of the coefficient at first order coming from idet
|
|
!!!!!!!!!!!!!!!!!!!!! for the excitation (i,j)(ispin,jspin) ---> (r,a)(ispin,jspin)
|
|
do istate = 1, N_states
|
|
coef_perturb_from_idet(a,jspin,ispin,istate) = perturb_dets_hij(a,jspin,ispin) / delta_e(a,jspin,istate)
|
|
enddo
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a_{b} a^{\dagger}_a | Idet>
|
|
do jdet = 1, idx(0)
|
|
if(idx(jdet).ne.idet)then
|
|
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
|
if (exc(0,1,1) == 1) then
|
|
! Mono alpha
|
|
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_a
|
|
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,1)) !!! a_{b}
|
|
index_orb_act_mono(idx(jdet),3) = 1
|
|
else
|
|
! Mono beta
|
|
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_a
|
|
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,2)) !!! a_{b}
|
|
index_orb_act_mono(idx(jdet),3) = 2
|
|
endif
|
|
else
|
|
index_orb_act_mono(idx(jdet),1) = -1
|
|
endif
|
|
enddo
|
|
|
|
integer :: kspin
|
|
do jdet = 1, idx(0)
|
|
if(idx(jdet).ne.idet)then
|
|
! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator
|
|
! are connected by the presence of the perturbers determinants |det_tmp>
|
|
aorb = index_orb_act_mono(idx(jdet),1) ! a^{\dagger}_{aorb}
|
|
borb = index_orb_act_mono(idx(jdet),2) ! a_{borb}
|
|
kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation
|
|
! the determinants Idet and Jdet interact throw the following operator
|
|
! | Jdet > = a_{borb,kspin} a^{\dagger}_{aorb, kspin} | Idet >
|
|
|
|
do ispin = 1, 2 ! you loop on all possible spin for the excitation
|
|
! a^{\dagger}_r a_{i} (ispin)
|
|
if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count
|
|
|
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{aorb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Idet >
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = perturb_dets(inint,1,aorb,kspin,ispin)
|
|
det_tmp(inint,2) = perturb_dets(inint,2,aorb,kspin,ispin)
|
|
enddo
|
|
double precision :: hja
|
|
! you determine the interaction between the excited determinant and the other parent | Jdet >
|
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{borb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Jdet >
|
|
! hja = < det_tmp | H | Jdet >
|
|
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
|
|
if(kspin == ispin)then
|
|
hja = phase * (active_int(borb,2) - active_int(borb,1) )
|
|
else
|
|
hja = phase * active_int(borb,1)
|
|
endif
|
|
|
|
do istate = 1, N_states
|
|
matrix_2h1p(idx(jdet),idet,istate) += hja * coef_perturb_from_idet(aorb,kspin,ispin,istate)
|
|
enddo
|
|
enddo ! ispin
|
|
|
|
else
|
|
! diagonal part of the dressing : interaction of | Idet > with all the perturbers generated by the excitations
|
|
!
|
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{aorb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Idet >
|
|
do ispin = 1, 2
|
|
do kspin = 1, 2
|
|
if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count
|
|
do a = 1, n_act_orb ! First active
|
|
do istate = 1, N_states
|
|
matrix_2h1p(idet,idet,istate) += coef_perturb_from_idet(a,kspin,ispin,istate) * perturb_dets_hij(a,kspin,ispin)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
endif
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
subroutine give_1h2p_contrib(matrix_1h2p)
|
|
use bitmasks
|
|
implicit none
|
|
double precision , intent(inout) :: matrix_1h2p(N_det,N_det,*)
|
|
integer :: i,v,r,a,b
|
|
integer :: iorb, vorb, rorb, aorb, borb
|
|
integer :: ispin,jspin
|
|
integer :: idet,jdet
|
|
integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,2,2)
|
|
double precision :: perturb_dets_phase(n_act_orb,2,2)
|
|
double precision :: perturb_dets_hij(n_act_orb,2,2)
|
|
double precision :: coef_perturb_from_idet(n_act_orb,2,2,N_states)
|
|
integer :: inint
|
|
integer :: elec_num_tab_local(2),acu_elec
|
|
integer(bit_kind) :: det_tmp(N_int,2)
|
|
integer :: exc(0:2,2,2)
|
|
integer :: accu_elec
|
|
double precision :: get_mo_bielec_integral
|
|
double precision :: active_int(n_act_orb,2)
|
|
double precision :: hij,phase
|
|
!matrix_1h2p = 0.d0
|
|
|
|
elec_num_tab_local = 0
|
|
do inint = 1, N_int
|
|
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
|
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
|
enddo
|
|
do i = 1, n_inact_orb ! First inactive
|
|
iorb = list_inact(i)
|
|
do v = 1, n_virt_orb ! First virtual
|
|
vorb = list_virt(v)
|
|
do r = 1, n_virt_orb ! Second virtual
|
|
rorb = list_virt(r)
|
|
! take all the integral you will need for i,j,r fixed
|
|
do a = 1, n_act_orb
|
|
aorb = list_act(a)
|
|
active_int(a,1) = get_mo_bielec_integral(iorb,aorb,rorb,vorb,mo_integrals_map) ! direct
|
|
active_int(a,2) = get_mo_bielec_integral(iorb,aorb,vorb,rorb,mo_integrals_map) ! exchange
|
|
enddo
|
|
|
|
integer :: degree(N_det)
|
|
integer :: idx(0:N_det)
|
|
double precision :: delta_e(n_act_orb,2,N_states)
|
|
integer :: istate
|
|
integer :: index_orb_act_mono(N_det,3)
|
|
|
|
do idet = 1, N_det
|
|
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (iorb,rorb)
|
|
do jspin = 1, 2 ! spin of the couple a-a^dagger (aorb,vorb)
|
|
do a = 1, n_act_orb ! First active
|
|
aorb = list_act(a)
|
|
if(ispin == jspin .and. vorb.le.rorb)cycle ! condition not to double count
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = psi_det(inint,1,idet)
|
|
det_tmp(inint,2) = psi_det(inint,2,idet)
|
|
enddo
|
|
! Do the excitation inactive -- > virtual
|
|
call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin
|
|
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
|
|
|
|
! Do the excitation active -- > virtual
|
|
call clear_bit_to_integer(aorb,det_tmp(1,jspin),N_int) ! hole in "aorb" of spin Jspin
|
|
call set_bit_to_integer(vorb,det_tmp(1,jspin),N_int) ! particle in "vorb" of spin Jspin
|
|
|
|
! Check if the excitation is possible or not on psi_det(idet)
|
|
accu_elec= 0
|
|
do inint = 1, N_int
|
|
accu_elec+= popcnt(det_tmp(inint,jspin))
|
|
enddo
|
|
if(accu_elec .ne. elec_num_tab_local(jspin))then
|
|
perturb_dets_phase(a,jspin,ispin) = 0.0
|
|
perturb_dets_hij(a,jspin,ispin) = 0.d0
|
|
do istate = 1, N_states
|
|
coef_perturb_from_idet(a,jspin,ispin,istate) = 0.d0
|
|
enddo
|
|
cycle
|
|
endif
|
|
do inint = 1, N_int
|
|
perturb_dets(inint,1,a,jspin,ispin) = det_tmp(inint,1)
|
|
perturb_dets(inint,2,a,jspin,ispin) = det_tmp(inint,2)
|
|
enddo
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = perturb_dets(inint,1,a,jspin,ispin)
|
|
det_tmp(inint,2) = perturb_dets(inint,2,a,jspin,ispin)
|
|
enddo
|
|
|
|
call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int)
|
|
perturb_dets_phase(a,jspin,ispin) = phase
|
|
do istate = 1, N_states
|
|
delta_e(a,jspin,istate) = one_anhil(a,jspin,istate) &
|
|
- fock_virt_total_spin_trace(rorb,istate) &
|
|
- fock_virt_total_spin_trace(vorb,istate) &
|
|
+ fock_core_inactive_total_spin_trace(iorb,istate)
|
|
enddo
|
|
if(ispin == jspin)then
|
|
perturb_dets_hij(a,jspin,ispin) = phase * (active_int(a,1) - active_int(a,2) )
|
|
else
|
|
perturb_dets_hij(a,jspin,ispin) = phase * active_int(a,1)
|
|
endif
|
|
!!!!!!!!!!!!!!!!!!!!!1 Computation of the coefficient at first order coming from idet
|
|
!!!!!!!!!!!!!!!!!!!!! for the excitation (i,j)(ispin,jspin) ---> (r,a)(ispin,jspin)
|
|
do istate = 1, N_states
|
|
coef_perturb_from_idet(a,jspin,ispin,istate) = perturb_dets_hij(a,jspin,ispin) / delta_e(a,jspin,istate)
|
|
enddo
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a^{\dagger}_b a_{a} | Idet>
|
|
do jdet = 1, idx(0)
|
|
if(idx(jdet).ne.idet)then
|
|
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
|
if (exc(0,1,1) == 1) then
|
|
! Mono alpha
|
|
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a
|
|
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b}
|
|
index_orb_act_mono(idx(jdet),3) = 1
|
|
else
|
|
! Mono beta
|
|
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,2)) !!! a_a
|
|
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b}
|
|
index_orb_act_mono(idx(jdet),3) = 2
|
|
endif
|
|
else
|
|
index_orb_act_mono(idx(jdet),1) = -1
|
|
endif
|
|
enddo
|
|
|
|
integer :: kspin
|
|
do jdet = 1, idx(0)
|
|
if(idx(jdet).ne.idet)then
|
|
! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator
|
|
! are connected by the presence of the perturbers determinants |det_tmp>
|
|
aorb = index_orb_act_mono(idx(jdet),1) ! a_{aorb}
|
|
borb = index_orb_act_mono(idx(jdet),2) ! a^{\dagger}_{borb}
|
|
kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation
|
|
! the determinants Idet and Jdet interact throw the following operator
|
|
! | Jdet > = a^{\dagger}_{borb,kspin} a_{aorb, kspin} | Idet >
|
|
|
|
do ispin = 1, 2 ! you loop on all possible spin for the excitation
|
|
! a^{\dagger}_r a_{i} (ispin)
|
|
if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count
|
|
|
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{aorb,kspin} a_{iorb,ispin} | Idet >
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = perturb_dets(inint,1,aorb,kspin,ispin)
|
|
det_tmp(inint,2) = perturb_dets(inint,2,aorb,kspin,ispin)
|
|
enddo
|
|
double precision :: hja
|
|
! you determine the interaction between the excited determinant and the other parent | Jdet >
|
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{borb,kspin} a_{iorb,ispin} | Jdet >
|
|
! hja = < det_tmp | H | Jdet >
|
|
|
|
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
|
|
if(kspin == ispin)then
|
|
hja = phase * (active_int(borb,1) - active_int(borb,2) )
|
|
else
|
|
hja = phase * active_int(borb,1)
|
|
endif
|
|
|
|
do istate = 1, N_states
|
|
matrix_1h2p(idx(jdet),idet,istate) += hja * coef_perturb_from_idet(aorb,kspin,ispin,istate)
|
|
enddo
|
|
enddo ! ispin
|
|
|
|
else
|
|
! diagonal part of the dressing : interaction of | Idet > with all the perturbers generated by the excitations
|
|
!
|
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{aorb,kspin} a_{iorb,ispin} | Idet >
|
|
do ispin = 1, 2
|
|
do kspin = 1, 2
|
|
do a = 1, n_act_orb ! First active
|
|
aorb = list_act(a)
|
|
if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count
|
|
do istate = 1, N_states
|
|
matrix_1h2p(idet,idet,istate) += coef_perturb_from_idet(a,kspin,ispin,istate) * perturb_dets_hij(a,kspin,ispin)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
endif
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
subroutine give_1h1p_contrib(matrix_1h1p)
|
|
use bitmasks
|
|
implicit none
|
|
double precision , intent(inout) :: matrix_1h1p(N_det,N_det,*)
|
|
integer :: i,j,r,a,b
|
|
integer :: iorb, jorb, rorb, aorb, borb
|
|
integer :: ispin,jspin
|
|
integer :: idet,jdet
|
|
integer :: inint
|
|
integer :: elec_num_tab_local(2),acu_elec
|
|
integer(bit_kind) :: det_tmp(N_int,2)
|
|
integer :: exc(0:2,2,2)
|
|
integer :: accu_elec
|
|
double precision :: get_mo_bielec_integral
|
|
double precision :: active_int(n_act_orb,2)
|
|
double precision :: hij,phase
|
|
integer :: degree(N_det)
|
|
integer :: idx(0:N_det)
|
|
integer :: istate
|
|
double precision :: hja,delta_e_inact_virt(N_states)
|
|
integer :: kspin,degree_scalar
|
|
!matrix_1h1p = 0.d0
|
|
|
|
elec_num_tab_local = 0
|
|
do inint = 1, N_int
|
|
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
|
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
|
enddo
|
|
do i = 1, n_inact_orb ! First inactive
|
|
iorb = list_inact(i)
|
|
do r = 1, n_virt_orb ! First virtual
|
|
rorb = list_virt(r)
|
|
do j = 1, N_states
|
|
delta_e_inact_virt(j) = fock_core_inactive_total_spin_trace(iorb,j) &
|
|
- fock_virt_total_spin_trace(rorb,j)
|
|
enddo
|
|
do idet = 1, N_det
|
|
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case of the mono excitations
|
|
do jdet = 1, idx(0)
|
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = psi_det(inint,1,idet)
|
|
det_tmp(inint,2) = psi_det(inint,2,idet)
|
|
enddo
|
|
! Do the excitation inactive -- > virtual
|
|
double precision :: himono,delta_e(N_states),coef_mono(N_states)
|
|
call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin
|
|
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
|
|
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,himono)
|
|
|
|
do state_target = 1, N_states
|
|
! delta_e(state_target) = one_anhil_one_creat_inact_virt(i,r,state_target) + delta_e_inact_virt(state_target)
|
|
delta_e(state_target) = one_anhil_one_creat_inact_virt_bis(i,r,idet,state_target)
|
|
coef_mono(state_target) = himono / delta_e(state_target)
|
|
enddo
|
|
if(idx(jdet).ne.idet)then
|
|
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
|
if (exc(0,1,1) == 1) then
|
|
! Mono alpha
|
|
aorb = (exc(1,2,1)) !!! a^{\dagger}_a
|
|
borb = (exc(1,1,1)) !!! a_{b}
|
|
jspin = 1
|
|
else
|
|
! Mono beta
|
|
aorb = (exc(1,2,2)) !!! a^{\dagger}_a
|
|
borb = (exc(1,1,2)) !!! a_{b}
|
|
jspin = 2
|
|
endif
|
|
|
|
call get_excitation_degree(psi_det(1,1,idx(jdet)),det_tmp,degree_scalar,N_int)
|
|
if(degree_scalar .ne. 2)then
|
|
print*, 'pb !!!'
|
|
print*, degree_scalar
|
|
call debug_det(psi_det(1,1,idx(jdet)),N_int)
|
|
call debug_det(det_tmp,N_int)
|
|
stop
|
|
endif
|
|
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
|
|
if(ispin == jspin )then
|
|
hij = -get_mo_bielec_integral(iorb,aorb,rorb,borb,mo_integrals_map) &
|
|
+ get_mo_bielec_integral(iorb,aorb,borb,rorb,mo_integrals_map)
|
|
else
|
|
hij = get_mo_bielec_integral(iorb,borb,rorb,aorb,mo_integrals_map)
|
|
endif
|
|
hij = hij * phase
|
|
double precision :: hij_test
|
|
integer :: state_target
|
|
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij_test)
|
|
if(dabs(hij - hij_test).gt.1.d-10)then
|
|
print*, 'ahah pb !!'
|
|
print*, 'hij .ne. hij_test'
|
|
print*, hij,hij_test
|
|
call debug_det(psi_det(1,1,idx(jdet)),N_int)
|
|
call debug_det(det_tmp,N_int)
|
|
print*, ispin, jspin
|
|
print*,iorb,borb,rorb,aorb
|
|
print*, phase
|
|
call i_H_j_verbose(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij_test)
|
|
stop
|
|
endif
|
|
do state_target = 1, N_states
|
|
matrix_1h1p(idx(jdet),idet,state_target) += hij* coef_mono(state_target)
|
|
enddo
|
|
else
|
|
do state_target = 1, N_states
|
|
matrix_1h1p(idet,idet,state_target) += himono * coef_mono(state_target)
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
end
|
|
|
|
subroutine give_1h1p_sec_order_singles_contrib(matrix_1h1p)
|
|
use bitmasks
|
|
implicit none
|
|
double precision , intent(inout) :: matrix_1h1p(N_det,N_det,*)
|
|
integer :: i,j,r,a,b
|
|
integer :: iorb, jorb, rorb, aorb, borb,s,sorb
|
|
integer :: ispin,jspin
|
|
integer :: idet,jdet
|
|
integer :: inint
|
|
integer :: elec_num_tab_local(2),acu_elec
|
|
integer(bit_kind) :: det_tmp(N_int,2),det_tmp_bis(N_int,2)
|
|
integer(bit_kind) :: det_pert(N_int,2,n_inact_orb,n_virt_orb,2)
|
|
double precision :: coef_det_pert(n_inact_orb,n_virt_orb,2,N_states,2)
|
|
double precision :: delta_e_det_pert(n_inact_orb,n_virt_orb,2,N_states)
|
|
double precision :: hij_det_pert(n_inact_orb,n_virt_orb,2,N_states)
|
|
integer :: exc(0:2,2,2)
|
|
integer :: accu_elec
|
|
double precision :: get_mo_bielec_integral
|
|
double precision :: active_int(n_act_orb,2)
|
|
double precision :: hij,phase
|
|
integer :: degree(N_det)
|
|
integer :: idx(0:N_det)
|
|
integer :: istate
|
|
double precision :: hja,delta_e_inact_virt(N_states)
|
|
integer :: kspin,degree_scalar
|
|
!matrix_1h1p = 0.d0
|
|
|
|
elec_num_tab_local = 0
|
|
do inint = 1, N_int
|
|
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
|
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
|
enddo
|
|
double precision :: himono,delta_e(N_states),coef_mono(N_states)
|
|
integer :: state_target
|
|
do idet = 1, N_det
|
|
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
|
do i = 1, n_inact_orb ! First inactive
|
|
iorb = list_inact(i)
|
|
do r = 1, n_virt_orb ! First virtual
|
|
rorb = list_virt(r)
|
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
do state_target = 1, N_states
|
|
coef_det_pert(i,r,ispin,state_target,1) = 0.d0
|
|
coef_det_pert(i,r,ispin,state_target,2) = 0.d0
|
|
enddo
|
|
do j = 1, N_states
|
|
delta_e_inact_virt(j) = fock_core_inactive_total_spin_trace(iorb,j) &
|
|
- fock_virt_total_spin_trace(rorb,j)
|
|
enddo
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = psi_det(inint,1,idet)
|
|
det_tmp(inint,2) = psi_det(inint,2,idet)
|
|
enddo
|
|
! Do the excitation inactive -- > virtual
|
|
call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin
|
|
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
|
|
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,himono)
|
|
do inint = 1, N_int
|
|
det_pert(inint,1,i,r,ispin) = det_tmp(inint,1)
|
|
det_pert(inint,2,i,r,ispin) = det_tmp(inint,2)
|
|
enddo
|
|
do state_target = 1, N_states
|
|
delta_e_det_pert(i,r,ispin,state_target) = one_anhil_one_creat_inact_virt(i,r,state_target) + delta_e_inact_virt(state_target)
|
|
coef_det_pert(i,r,ispin,state_target,1) = himono / delta_e_det_pert(i,r,ispin,state_target)
|
|
enddo
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case of the mono excitations
|
|
enddo ! ispin
|
|
enddo ! rorb
|
|
enddo ! iorb
|
|
|
|
do i = 1, n_inact_orb ! First inactive
|
|
iorb = list_inact(i)
|
|
do r = 1, n_virt_orb ! First virtual
|
|
rorb = list_virt(r)
|
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = det_pert(inint,1,i,r,ispin)
|
|
det_tmp(inint,2) = det_pert(inint,2,i,r,ispin)
|
|
enddo
|
|
do j = 1, n_inact_orb ! First inactive
|
|
jorb = list_inact(j)
|
|
do s = 1, n_virt_orb ! First virtual
|
|
sorb = list_virt(s)
|
|
do jspin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
if(i==j.and.r==s.and.ispin==jspin)cycle
|
|
do inint = 1, N_int
|
|
det_tmp_bis(inint,1) = det_pert(inint,1,j,s,jspin)
|
|
det_tmp_bis(inint,2) = det_pert(inint,2,j,s,jspin)
|
|
enddo
|
|
call i_H_j(det_tmp_bis,det_tmp,N_int,himono)
|
|
do state_target = 1, N_states
|
|
coef_det_pert(i,r,ispin,state_target,2) += &
|
|
coef_det_pert(j,s,jspin,state_target,1) * himono / delta_e_det_pert(i,r,ispin,state_target)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo ! ispin
|
|
enddo ! rorb
|
|
enddo ! iorb
|
|
do i = 1, n_inact_orb ! First inactive
|
|
iorb = list_inact(i)
|
|
do r = 1, n_virt_orb ! First virtual
|
|
rorb = list_virt(r)
|
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
do state_target = 1, N_states
|
|
coef_det_pert(i,r,ispin,state_target,1) += coef_det_pert(i,r,ispin,state_target,2)
|
|
enddo
|
|
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = det_pert(inint,1,i,r,ispin)
|
|
det_tmp(inint,2) = det_pert(inint,2,i,r,ispin)
|
|
enddo
|
|
do jdet = 1, idx(0)
|
|
!
|
|
if(idx(jdet).ne.idet)then
|
|
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
|
if (exc(0,1,1) == 1) then
|
|
! Mono alpha
|
|
aorb = (exc(1,2,1)) !!! a^{\dagger}_a
|
|
borb = (exc(1,1,1)) !!! a_{b}
|
|
jspin = 1
|
|
else
|
|
aorb = (exc(1,2,2)) !!! a^{\dagger}_a
|
|
borb = (exc(1,1,2)) !!! a_{b}
|
|
jspin = 2
|
|
endif
|
|
|
|
call get_excitation_degree(psi_det(1,1,idx(jdet)),det_tmp,degree_scalar,N_int)
|
|
if(degree_scalar .ne. 2)then
|
|
print*, 'pb !!!'
|
|
print*, degree_scalar
|
|
call debug_det(psi_det(1,1,idx(jdet)),N_int)
|
|
call debug_det(det_tmp,N_int)
|
|
stop
|
|
endif
|
|
call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int)
|
|
double precision :: hij_test
|
|
hij_test = 0.d0
|
|
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij_test)
|
|
do state_target = 1, N_states
|
|
matrix_1h1p(idx(jdet),idet,state_target) += hij_test* coef_det_pert(i,r,ispin,state_target,2)
|
|
enddo
|
|
else
|
|
hij_test = 0.d0
|
|
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,hij_test)
|
|
do state_target = 1, N_states
|
|
matrix_1h1p(idet,idet,state_target) += hij_test* coef_det_pert(i,r,ispin,state_target,2)
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
enddo ! idet
|
|
end
|
|
|
|
|
|
subroutine give_1p_sec_order_singles_contrib(matrix_1p)
|
|
use bitmasks
|
|
implicit none
|
|
double precision , intent(inout) :: matrix_1p(N_det,N_det,*)
|
|
integer :: i,j,r,a,b
|
|
integer :: iorb, jorb, rorb, aorb, borb,s,sorb
|
|
integer :: ispin,jspin
|
|
integer :: idet,jdet
|
|
integer :: inint
|
|
integer :: elec_num_tab_local(2),acu_elec
|
|
integer(bit_kind) :: det_tmp(N_int,2),det_tmp_bis(N_int,2)
|
|
integer(bit_kind) :: det_pert(N_int,2,n_act_orb,n_virt_orb,2)
|
|
double precision :: coef_det_pert(n_act_orb,n_virt_orb,2,N_states,2)
|
|
double precision :: delta_e_det_pert(n_act_orb,n_virt_orb,2,N_states)
|
|
double precision :: hij_det_pert(n_act_orb,n_virt_orb,2)
|
|
integer :: exc(0:2,2,2)
|
|
integer :: accu_elec
|
|
double precision :: get_mo_bielec_integral
|
|
double precision :: hij,phase
|
|
integer :: degree(N_det)
|
|
integer :: idx(0:N_det)
|
|
integer :: istate
|
|
double precision :: hja,delta_e_act_virt(N_states)
|
|
integer :: kspin,degree_scalar
|
|
!matrix_1p = 0.d0
|
|
|
|
elec_num_tab_local = 0
|
|
do inint = 1, N_int
|
|
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
|
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
|
enddo
|
|
double precision :: himono,delta_e(N_states),coef_mono(N_states)
|
|
integer :: state_target
|
|
do idet = 1, N_det
|
|
call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
|
do i = 1, n_act_orb ! First active
|
|
iorb = list_act(i)
|
|
do r = 1, n_virt_orb ! First virtual
|
|
rorb = list_virt(r)
|
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
do state_target = 1, N_states
|
|
coef_det_pert(i,r,ispin,state_target,1) = 0.d0
|
|
coef_det_pert(i,r,ispin,state_target,2) = 0.d0
|
|
enddo
|
|
do j = 1, N_states
|
|
delta_e_act_virt(j) = - fock_virt_total_spin_trace(rorb,j)
|
|
enddo
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = psi_det(inint,1,idet)
|
|
det_tmp(inint,2) = psi_det(inint,2,idet)
|
|
enddo
|
|
! Do the excitation active -- > virtual
|
|
call do_mono_excitation(det_tmp,iorb,rorb,ispin,i_ok)
|
|
integer :: i_ok
|
|
if(i_ok .ne.1)then
|
|
do state_target = 1, N_states
|
|
coef_det_pert(i,r,ispin,state_target,1) = -1.d+10
|
|
coef_det_pert(i,r,ispin,state_target,2) = -1.d+10
|
|
hij_det_pert(i,r,ispin) = 0.d0
|
|
enddo
|
|
do inint = 1, N_int
|
|
det_pert(inint,1,i,r,ispin) = 0_bit_kind
|
|
det_pert(inint,2,i,r,ispin) = 0_bit_kind
|
|
enddo
|
|
cycle
|
|
endif
|
|
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,himono)
|
|
do inint = 1, N_int
|
|
det_pert(inint,1,i,r,ispin) = det_tmp(inint,1)
|
|
det_pert(inint,2,i,r,ispin) = det_tmp(inint,2)
|
|
enddo
|
|
do state_target = 1, N_states
|
|
delta_e_det_pert(i,r,ispin,state_target) = one_creat_virt(i,r,state_target) + delta_e_act_virt(state_target)
|
|
coef_det_pert(i,r,ispin,state_target,1) = himono / delta_e_det_pert(i,r,ispin,state_target)
|
|
hij_det_pert(i,r,ispin) = himono
|
|
enddo
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case of the mono excitations
|
|
enddo ! ispin
|
|
enddo ! rorb
|
|
enddo ! iorb
|
|
|
|
! do i = 1, n_act_orb ! First active
|
|
! do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
! if(coef_det_pert(i,1,ispin,1,1) == -1.d+10)cycle
|
|
! iorb = list_act(i)
|
|
! do r = 1, n_virt_orb ! First virtual
|
|
! rorb = list_virt(r)
|
|
! do inint = 1, N_int
|
|
! det_tmp(inint,1) = det_pert(inint,1,i,r,ispin)
|
|
! det_tmp(inint,2) = det_pert(inint,2,i,r,ispin)
|
|
! enddo
|
|
! do j = 1, n_act_orb ! First active
|
|
! do jspin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
! if(coef_det_pert(j,1,jspin,1,1) == -1.d+10)cycle
|
|
! jorb = list_act(j)
|
|
! do s = 1, n_virt_orb ! First virtual
|
|
! sorb = list_virt(s)
|
|
! if(i==j.and.r==s.and.ispin==jspin)cycle
|
|
! do inint = 1, N_int
|
|
! det_tmp_bis(inint,1) = det_pert(inint,1,j,s,jspin)
|
|
! det_tmp_bis(inint,2) = det_pert(inint,2,j,s,jspin)
|
|
! enddo
|
|
! call i_H_j(det_tmp_bis,det_tmp,N_int,himono)
|
|
! do state_target = 1, N_states
|
|
! coef_det_pert(i,r,ispin,state_target,2) += &
|
|
! coef_det_pert(j,s,jspin,state_target,1) * himono / delta_e_det_pert(i,r,ispin,state_target)
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo
|
|
! enddo ! ispin
|
|
! enddo ! rorb
|
|
! enddo ! iorb
|
|
|
|
do i = 1, n_act_orb ! First active
|
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r)
|
|
if(coef_det_pert(i,1,ispin,1,1) == -1.d+10)cycle
|
|
iorb = list_act(i)
|
|
do r = 1, n_virt_orb ! First virtual
|
|
rorb = list_virt(r)
|
|
! do state_target = 1, N_states
|
|
! coef_det_pert(i,r,ispin,state_target,1) += coef_det_pert(i,r,ispin,state_target,2)
|
|
! enddo
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = det_pert(inint,1,i,r,ispin)
|
|
det_tmp(inint,2) = det_pert(inint,2,i,r,ispin)
|
|
enddo
|
|
do jdet = 1,N_det
|
|
double precision :: coef_array(N_states),hij_test
|
|
call i_H_j(det_tmp,psi_det(1,1,jdet),N_int,himono)
|
|
call get_delta_e_dyall(psi_det(1,1,jdet),det_tmp,coef_array,hij_test,delta_e)
|
|
do state_target = 1, N_states
|
|
! matrix_1p(idet,jdet,state_target) += himono * coef_det_pert(i,r,ispin,state_target,1)
|
|
matrix_1p(idet,jdet,state_target) += himono * hij_det_pert(i,r,ispin) / delta_e(state_target)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
enddo ! idet
|
|
end
|
|
|
|
|
|
|
|
subroutine give_1h1p_only_doubles_spin_cross(matrix_1h1p)
|
|
use bitmasks
|
|
implicit none
|
|
double precision , intent(inout) :: matrix_1h1p(N_det,N_det,*)
|
|
integer :: i,j,r,a,b
|
|
integer :: iorb, jorb, rorb, aorb, borb
|
|
integer :: ispin,jspin
|
|
integer :: idet,jdet
|
|
integer :: inint
|
|
integer :: elec_num_tab_local(2),acu_elec
|
|
integer(bit_kind) :: det_tmp(N_int,2)
|
|
integer :: exc(0:2,2,2)
|
|
integer :: accu_elec
|
|
double precision :: get_mo_bielec_integral
|
|
double precision :: active_int(n_act_orb,2)
|
|
double precision :: hij,phase
|
|
integer :: degree(N_det)
|
|
integer :: idx(0:N_det)
|
|
integer :: istate
|
|
double precision :: hja,delta_e_inact_virt(N_states)
|
|
integer(bit_kind) :: pert_det(N_int,2,n_act_orb,n_act_orb,2)
|
|
double precision :: pert_det_coef(n_act_orb,n_act_orb,2,N_states)
|
|
integer :: kspin,degree_scalar
|
|
integer :: other_spin(2)
|
|
other_spin(1) = 2
|
|
other_spin(2) = 1
|
|
double precision :: hidouble,delta_e(N_states)
|
|
!matrix_1h1p = 0.d0
|
|
|
|
elec_num_tab_local = 0
|
|
do inint = 1, N_int
|
|
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
|
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
|
enddo
|
|
do i = 1, n_inact_orb ! First inactive
|
|
iorb = list_inact(i)
|
|
do r = 1, n_virt_orb ! First virtual
|
|
rorb = list_virt(r)
|
|
do j = 1, N_states
|
|
delta_e_inact_virt(j) = fock_core_inactive_total_spin_trace(iorb,j) &
|
|
- fock_virt_total_spin_trace(rorb,j)
|
|
enddo
|
|
do idet = 1, N_det
|
|
call get_excitation_degree_vector_double_alpha_beta(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case of the mono excitations
|
|
do ispin = 1, 2
|
|
jspin = other_spin(ispin)
|
|
do a = 1, n_act_orb
|
|
aorb = list_act(a)
|
|
do b = 1, n_act_orb
|
|
borb = list_act(b)
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = psi_det(inint,1,idet)
|
|
det_tmp(inint,2) = psi_det(inint,2,idet)
|
|
enddo
|
|
! Do the excitation (i-->a)(ispin) + (b-->r)(other_spin(ispin))
|
|
integer :: i_ok,corb,dorb
|
|
call do_mono_excitation(det_tmp,iorb,aorb,ispin,i_ok)
|
|
if(i_ok .ne. 1)then
|
|
do state_target = 1, N_states
|
|
pert_det_coef(a,b,ispin,state_target) = -100000.d0
|
|
enddo
|
|
do inint = 1, N_int
|
|
pert_det(inint,1,a,b,ispin) = 0_bit_kind
|
|
pert_det(inint,2,a,b,ispin) = 0_bit_kind
|
|
enddo
|
|
cycle
|
|
endif
|
|
call do_mono_excitation(det_tmp,borb,rorb,jspin,i_ok)
|
|
if(i_ok .ne. 1)then
|
|
do state_target = 1, N_states
|
|
pert_det_coef(a,b,ispin,state_target) = -100000.d0
|
|
enddo
|
|
do inint = 1, N_int
|
|
pert_det(inint,1,a,b,ispin) = 0_bit_kind
|
|
pert_det(inint,2,a,b,ispin) = 0_bit_kind
|
|
enddo
|
|
cycle
|
|
endif
|
|
do inint = 1, N_int
|
|
pert_det(inint,1,a,b,ispin) = det_tmp(inint,1)
|
|
pert_det(inint,2,a,b,ispin) = det_tmp(inint,2)
|
|
enddo
|
|
|
|
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,hidouble)
|
|
do state_target = 1, N_states
|
|
delta_e(state_target) = one_anhil_one_creat(a,b,ispin,jspin,state_target) + delta_e_inact_virt(state_target)
|
|
pert_det_coef(a,b,ispin,state_target) = hidouble / delta_e(state_target)
|
|
matrix_1h1p(idet,idet,state_target) += hidouble * pert_det_coef(a,b,ispin,state_target)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
enddo
|
|
do jdet = 1, idx(0)
|
|
if(idx(jdet).ne.idet)then
|
|
call get_double_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
|
integer :: c,d,state_target
|
|
integer(bit_kind) :: det_tmp_bis(N_int,2)
|
|
! excitation from I --> J
|
|
! (a->c) (alpha) + (b->d) (beta)
|
|
aorb = exc(1,1,1)
|
|
corb = exc(1,2,1)
|
|
c = list_act_reverse(corb)
|
|
borb = exc(1,1,2)
|
|
dorb = exc(1,2,2)
|
|
d = list_act_reverse(dorb)
|
|
ispin = 1
|
|
jspin = 2
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = pert_det(inint,1,c,d,1)
|
|
det_tmp(inint,2) = pert_det(inint,2,c,d,1)
|
|
det_tmp_bis(inint,1) = pert_det(inint,1,c,d,2)
|
|
det_tmp_bis(inint,2) = pert_det(inint,2,c,d,2)
|
|
enddo
|
|
double precision :: hjdouble_1,hjdouble_2
|
|
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hjdouble_1)
|
|
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp_bis,N_int,hjdouble_2)
|
|
do state_target = 1, N_states
|
|
matrix_1h1p(idx(jdet),idet,state_target) += (pert_det_coef(c,d,1,state_target) * hjdouble_1 + pert_det_coef(c,d,2,state_target) * hjdouble_2 )
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
|
|
|
|
|
|
|
|
end
|
|
|
|
|