10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-24 06:02:17 +02:00
quantum_package/src/Dets/H_apply_template.f
2014-05-13 13:57:58 +02:00

357 lines
12 KiB
Fortran

subroutine $subroutine_diexc(key_in, hole_1,particl_1, hole_2, particl_2 $parameters )
use omp_lib
use bitmasks
implicit none
$declarations
integer(omp_lock_kind) :: lck
integer(bit_kind),intent(in) :: key_in(N_int,2)
integer(bit_kind),allocatable :: keys_out(:,:,:)
double precision, allocatable :: hij_tab(:)
integer(bit_kind), intent(in) :: hole_1(N_int,2), particl_1(N_int,2)
integer(bit_kind), intent(in) :: hole_2(N_int,2), particl_2(N_int,2)
integer(bit_kind) :: hole_save(N_int,2)
integer(bit_kind) :: key(N_int,2),hole(N_int,2), particle(N_int,2)
integer(bit_kind) :: hole_tmp(N_int,2), particle_tmp(N_int,2)
integer :: ii,i,jj,j,k,ispin,l
integer :: occ_particle(N_int*bit_kind_size,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_particle_tmp(N_int*bit_kind_size,2)
integer :: occ_hole_tmp(N_int*bit_kind_size,2)
integer :: kk,pp,other_spin,key_idx
integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2)
integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2)
integer,parameter :: size_max = $size_max
double precision :: hij_elec, mo_bielec_integral, thresh
integer, allocatable :: ia_ja_pairs(:,:,:)
double precision :: diag_H_mat_elem, E_ref
PROVIDE mo_integrals_map
PROVIDE mo_bielec_integrals_in_map
$set_i_H_j_threshold
$omp_init_lock
E_ref = diag_H_mat_elem(key_in,N_int)
$initialization
$omp_parallel
allocate (keys_out(N_int,2,size_max),hij_tab(size_max))
!print*,'key_in !!'
!call print_key(key_in)
!print*,'hole_1, particl_1'
!call print_key(hole_1)
!call print_key(particl_1)
!print*,'hole_2, particl_2'
!call print_key(hole_2)
!call print_key(particl_2)
!!!! First couple hole particle
do j = 1, N_int
hole(j,1) = iand(hole_1(j,1),key_in(j,1))
hole(j,2) = iand(hole_1(j,2),key_in(j,2))
particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1))
particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2))
enddo
call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int)
call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int)
call bitstring_to_list(hole(1,1),occ_hole(1,1),N_elec_in_key_hole_1(1),N_int)
call bitstring_to_list(hole(1,2),occ_hole(1,2),N_elec_in_key_hole_1(2),N_int)
allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2))
do ispin=1,2
i=0
do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole
i_a = occ_hole(ii,ispin)
ASSERT (i_a > 0)
ASSERT (i_a <= mo_tot_num)
do jj=1,N_elec_in_key_part_1(ispin) !particle
j_a = occ_particle(jj,ispin)
ASSERT (j_a > 0)
ASSERT (j_a <= mo_tot_num)
i += 1
ia_ja_pairs(1,i,ispin) = i_a
ia_ja_pairs(2,i,ispin) = j_a
enddo
enddo
ia_ja_pairs(1,0,ispin) = i
enddo
key_idx = 0
integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b
integer(bit_kind) :: test(N_int,2)
double precision :: accu
accu = 0.d0
hij_elec = 0.d0
do ispin=1,2
other_spin = iand(ispin,1)+1
$omp_do
do ii=1,ia_ja_pairs(1,0,ispin)
i_a = ia_ja_pairs(1,ii,ispin)
ASSERT (i_a > 0)
ASSERT (i_a <= mo_tot_num)
j_a = ia_ja_pairs(2,ii,ispin)
ASSERT (j_a > 0)
ASSERT (j_a <= mo_tot_num)
hole = key_in
k = ishft(i_a-1,-bit_kind_shift)+1
j = i_a-ishft(k-1,bit_kind_shift)-1
hole(k,ispin) = ibclr(hole(k,ispin),j)
k_a = ishft(j_a-1,-bit_kind_shift)+1
l_a = j_a-ishft(k_a-1,bit_kind_shift)-1
hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a)
!!!! Second couple hole particle
do j = 1, N_int
hole_tmp(j,1) = iand(hole_2(j,1),hole(j,1))
hole_tmp(j,2) = iand(hole_2(j,2),hole(j,2))
particle_tmp(j,1) = iand(xor(particl_2(j,1),hole(j,1)),particl_2(j,1))
particle_tmp(j,2) = iand(xor(particl_2(j,2),hole(j,2)),particl_2(j,2))
enddo
call bitstring_to_list(particle_tmp(1,1),occ_particle_tmp(1,1),N_elec_in_key_part_2(1),N_int)
call bitstring_to_list(particle_tmp(1,2),occ_particle_tmp(1,2),N_elec_in_key_part_2(2),N_int)
call bitstring_to_list(hole_tmp (1,1),occ_hole_tmp (1,1),N_elec_in_key_hole_2(1),N_int)
call bitstring_to_list(hole_tmp (1,2),occ_hole_tmp (1,2),N_elec_in_key_hole_2(2),N_int)
! hole = a^(+)_j_a(ispin) a_i_a(ispin)|key_in> : mono exc :: orb(i_a,ispin) --> orb(j_a,ispin)
hole_save = hole
if (ispin == 1) then
integer :: jjj
do kk = 1,N_elec_in_key_hole_2(other_spin)
hole = hole_save
i_b = occ_hole_tmp(kk,other_spin)
ASSERT (i_b > 0)
ASSERT (i_b <= mo_tot_num)
k = ishft(i_b-1,-bit_kind_shift)+1
j = i_b-ishft(k-1,bit_kind_shift)-1
hole(k,other_spin) = ibclr(hole(k,other_spin),j)
do jjj=1,N_elec_in_key_part_2(other_spin) ! particule
j_b = occ_particle_tmp(jjj,other_spin)
ASSERT (j_b > 0)
ASSERT (j_b <= mo_tot_num)
if(dabs( mo_bielec_integral(j_a,j_b,i_a,i_b))<thresh)cycle
key = hole
k = ishft(j_b-1,-bit_kind_shift)+1
l = j_b-ishft(k-1,bit_kind_shift)-1
key(k,other_spin) = ibset(key(k,other_spin),l)
call i_H_j(key,key_in,N_int,hij_elec)
if(dabs(hij_elec)>=thresh) then
key_idx += 1
do k=1,N_int
keys_out(k,1,key_idx) = key(k,1)
keys_out(k,2,key_idx) = key(k,2)
enddo
hij_tab(key_idx) = hij_elec
ASSERT (key_idx <= size_max)
if (key_idx == size_max) then
$omp_set_lock
$keys_work
$omp_unset_lock
key_idx = 0
endif
endif
enddo
if (key_idx > ishft(size_max,-5)) then
if ($omp_test_lock) then
$keys_work
$omp_unset_lock
key_idx = 0
endif
endif
enddo
endif
! does all the mono excitations of the same spin
do kk = 1,N_elec_in_key_hole_2(ispin)
i_b = occ_hole_tmp(kk,ispin)
ASSERT (i_b > 0)
ASSERT (i_b <= mo_tot_num)
if (i_b <= i_a.or.i_b == j_a) cycle
hole = hole_save
k = ishft(i_b-1,-bit_kind_shift)+1
j = i_b-ishft(k-1,bit_kind_shift)-1
hole(k,ispin) = ibclr(hole(k,ispin),j)
do jjj=1,N_elec_in_key_part_2(ispin)
j_b = occ_particle_tmp(jjj,ispin)
ASSERT (j_b > 0)
ASSERT (j_b <= mo_tot_num)
if (j_b <= j_a) cycle
if(dabs( mo_bielec_integral(j_a,j_b,i_b,i_a))<thresh)cycle
key = hole
k = ishft(j_b-1,-bit_kind_shift)+1
l = j_b-ishft(k-1,bit_kind_shift)-1
key(k,ispin) = ibset(key(k,ispin),l)
!! a^((+)_j_b(ispin) a_i_b(ispin) : mono exc :: orb(i_b,ispin) --> orb(j_b,ispin)
call i_H_j(key,key_in,N_int,hij_elec)
if(dabs(hij_elec)>=thresh) then
key_idx += 1
do k=1,N_int
keys_out(k,1,key_idx) = key(k,1)
keys_out(k,2,key_idx) = key(k,2)
enddo
hij_tab(key_idx) = hij_elec
ASSERT (key_idx <= size_max)
if (key_idx == size_max) then
$omp_set_lock
$keys_work
$omp_unset_lock
key_idx = 0
endif
endif
enddo
if (key_idx > ishft(size_max,-5)) then
if ($omp_test_lock) then
$keys_work
$omp_unset_lock
key_idx = 0
endif
endif
enddo! kk
enddo ! ii
$omp_enddo
enddo ! ispin
$omp_set_lock
$keys_work
$omp_unset_lock
deallocate (keys_out,hij_tab,ia_ja_pairs)
$omp_end_parallel
$omp_destroy_lock
$finalization
end
subroutine $subroutine_monoexc(key_in, hole_1,particl_1 $parameters )
use omp_lib
use bitmasks
implicit none
$declarations
integer(omp_lock_kind) :: lck
integer(bit_kind),intent(in) :: key_in(N_int,2)
integer(bit_kind),allocatable :: keys_out(:,:,:)
double precision, allocatable :: hij_tab(:)
integer(bit_kind), intent(in) :: hole_1(N_int,2), particl_1(N_int,2)
integer(bit_kind) :: hole_2(N_int,2), particl_2(N_int,2)
integer(bit_kind) :: hole_save(N_int,2)
integer(bit_kind) :: key(N_int,2),hole(N_int,2), particle(N_int,2)
integer(bit_kind) :: hole_tmp(N_int,2), particle_tmp(N_int,2)
integer :: ii,i,jj,j,k,ispin,l
integer :: occ_particle(N_int*bit_kind_size,2)
integer :: occ_hole(N_int*bit_kind_size,2)
integer :: occ_particle_tmp(N_int*bit_kind_size,2)
integer :: occ_hole_tmp(N_int*bit_kind_size,2)
integer :: kk,pp,other_spin,key_idx
integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2)
integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2)
integer,parameter :: size_max = $size_max
double precision :: hij_elec, thresh
integer, allocatable :: ia_ja_pairs(:,:,:)
double precision :: diag_H_mat_elem, E_ref
PROVIDE mo_integrals_map
PROVIDE mo_bielec_integrals_in_map
$set_i_H_j_threshold
$omp_init_lock
E_ref = diag_H_mat_elem(key_in,N_int)
$initialization
$omp_parallel
allocate (keys_out(N_int,2,size_max),hij_tab(size_max))
!!!! First couple hole particle
do j = 1, N_int
hole(j,1) = iand(hole_1(j,1),key_in(j,1))
hole(j,2) = iand(hole_1(j,2),key_in(j,2))
particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1))
particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2))
enddo
call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int)
call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int)
call bitstring_to_list(hole (1,1),occ_hole (1,1),N_elec_in_key_hole_1(1),N_int)
call bitstring_to_list(hole (1,2),occ_hole (1,2),N_elec_in_key_hole_1(2),N_int)
allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2))
do ispin=1,2
i=0
do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole
i_a = occ_hole(ii,ispin)
do jj=1,N_elec_in_key_part_1(ispin) !particule
j_a = occ_particle(jj,ispin)
i += 1
ia_ja_pairs(1,i,ispin) = i_a
ia_ja_pairs(2,i,ispin) = j_a
enddo
enddo
ia_ja_pairs(1,0,ispin) = i
enddo
key_idx = 0
integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b
integer(bit_kind) :: test(N_int,2)
double precision :: accu
accu = 0.d0
hij_elec = 0.d0
do ispin=1,2
other_spin = iand(ispin,1)+1
$omp_do
do ii=1,ia_ja_pairs(1,0,ispin)
i_a = ia_ja_pairs(1,ii,ispin)
j_a = ia_ja_pairs(2,ii,ispin)
hole = key_in
k = ishft(i_a-1,-bit_kind_shift)+1
j = i_a-ishft(k-1,bit_kind_shift)-1
hole(k,ispin) = ibclr(hole(k,ispin),j)
k_a = ishft(j_a-1,-bit_kind_shift)+1
l_a = j_a-ishft(k_a-1,bit_kind_shift)-1
hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a)
call i_H_j(hole,key_in,N_int,hij_elec)
if(dabs(hij_elec) .ge. thresh)then
key_idx += 1
do k=1,N_int
keys_out(k,1,key_idx) = hole(k,1)
keys_out(k,2,key_idx) = hole(k,2)
enddo
hij_tab(key_idx) = hij_elec
if (key_idx > ishft(size_max,-5)) then
if ($omp_test_lock) then
$keys_work
$omp_unset_lock
key_idx = 0
endif
endif
if (key_idx == size_max) then
$omp_set_lock
$keys_work
$omp_unset_lock
key_idx = 0
endif
endif
enddo ! ii
$omp_enddo
enddo ! ispin
$omp_set_lock
$keys_work
$omp_unset_lock
deallocate (keys_out,hij_tab,ia_ja_pairs)
$omp_end_parallel
$omp_destroy_lock
$finalization
end