quantum_package/src/Determinants/density_matrix.irp.f

272 lines
9.1 KiB
Fortran

BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha_average, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta_average, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Alpha and beta one-body density matrix for each state
END_DOC
integer :: i
one_body_dm_mo_alpha_average = 0.d0
one_body_dm_mo_beta_average = 0.d0
do i = 1,N_states
one_body_dm_mo_alpha_average(:,:) += one_body_dm_mo_alpha(:,:,i) * state_average_weight(i)
one_body_dm_mo_beta_average(:,:) += one_body_dm_mo_beta(:,:,i) * state_average_weight(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha, (mo_tot_num_align,mo_tot_num,N_states) ]
&BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta, (mo_tot_num_align,mo_tot_num,N_states) ]
implicit none
BEGIN_DOC
! Alpha and beta one-body density matrix for each state
END_DOC
integer :: j,k,l,m
integer :: occ(N_int*bit_kind_size,2)
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer :: exc(0:2,2,2),n_occ(2)
double precision, allocatable :: tmp_a(:,:,:), tmp_b(:,:,:)
one_body_dm_mo_alpha = 0.d0
one_body_dm_mo_beta = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, &
!$OMP tmp_a, tmp_b, n_occ)&
!$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num,&
!$OMP elec_beta_num,one_body_dm_mo_alpha,one_body_dm_mo_beta,N_det,mo_tot_num_align,&
!$OMP mo_tot_num)
allocate(tmp_a(mo_tot_num_align,mo_tot_num,N_states), tmp_b(mo_tot_num_align,mo_tot_num,N_states) )
tmp_a = 0.d0
tmp_b = 0.d0
!$OMP DO SCHEDULE(dynamic)
do k=1,N_det
call bitstring_to_list_ab(psi_det(1,1,k), occ, n_occ, N_int)
do m=1,N_states
ck = psi_coef(k,m)*psi_coef(k,m)
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j,m) += ck
enddo
do l=1,elec_beta_num
j = occ(l,2)
tmp_b(j,j,m) += ck
enddo
enddo
do l=1,k-1
call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int)
if (degree /= 1) then
cycle
endif
call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
do m=1,N_states
ckl = psi_coef(k,m) * psi_coef(l,m) * phase
if (s1==1) then
tmp_a(h1,p1,m) += ckl
tmp_a(p1,h1,m) += ckl
else
tmp_b(h1,p1,m) += ckl
tmp_b(p1,h1,m) += ckl
endif
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_body_dm_mo_alpha(:,:,:) = one_body_dm_mo_alpha(:,:,:) + tmp_a(:,:,:)
!$OMP END CRITICAL
!$OMP CRITICAL
one_body_dm_mo_beta(:,:,:) = one_body_dm_mo_beta(:,:,:) + tmp_b(:,:,:)
!$OMP END CRITICAL
deallocate(tmp_a,tmp_b)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_alpha, (mo_tot_num_align,mo_tot_num) ]
&BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_beta, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! Alpha and beta one-body density matrix for each state
END_DOC
integer :: j,k,l,m
integer :: occ(N_int*bit_kind_size,2)
double precision :: ck, cl, ckl
double precision :: phase
integer :: h1,h2,p1,p2,s1,s2, degree
integer :: exc(0:2,2,2),n_occ_alpha
double precision, allocatable :: tmp_a(:,:), tmp_b(:,:)
integer :: degree_respect_to_HF_k
integer :: degree_respect_to_HF_l
PROVIDE elec_alpha_num elec_beta_num
one_body_single_double_dm_mo_alpha = 0.d0
one_body_single_double_dm_mo_beta = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, &
!$OMP tmp_a, tmp_b, n_occ_alpha,degree_respect_to_HF_k,degree_respect_to_HF_l)&
!$OMP SHARED(ref_bitmask,psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,&
!$OMP elec_beta_num,one_body_single_double_dm_mo_alpha,one_body_single_double_dm_mo_beta,N_det,mo_tot_num_align,&
!$OMP mo_tot_num)
allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) )
tmp_a = 0.d0
tmp_b = 0.d0
!$OMP DO SCHEDULE(dynamic)
do k=1,N_det
call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int)
call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int)
call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_k,N_int)
do m=1,N_states
ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m)
call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_l,N_int)
if(degree_respect_to_HF_l.le.0)then
do l=1,elec_alpha_num
j = occ(l,1)
tmp_a(j,j) += ck
enddo
do l=1,elec_beta_num
j = occ(l,2)
tmp_b(j,j) += ck
enddo
endif
enddo
do l=1,k-1
call get_excitation_degree(ref_bitmask,psi_det(1,1,l),degree_respect_to_HF_l,N_int)
if(degree_respect_to_HF_k.ne.0)cycle
if(degree_respect_to_HF_l.eq.2.and.degree_respect_to_HF_k.ne.2)cycle
call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int)
if (degree /= 1) then
cycle
endif
call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
do m=1,N_states
ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m)
if (s1==1) then
tmp_a(h1,p1) += ckl
tmp_a(p1,h1) += ckl
else
tmp_b(h1,p1) += ckl
tmp_b(p1,h1) += ckl
endif
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
one_body_single_double_dm_mo_alpha = one_body_single_double_dm_mo_alpha + tmp_a
!$OMP END CRITICAL
!$OMP CRITICAL
one_body_single_double_dm_mo_beta = one_body_single_double_dm_mo_beta + tmp_b
!$OMP END CRITICAL
deallocate(tmp_a,tmp_b)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_dm_mo, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! One-body density matrix
END_DOC
one_body_dm_mo = one_body_dm_mo_alpha_average + one_body_dm_mo_beta_average
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_spin_density_mo, (mo_tot_num_align,mo_tot_num) ]
implicit none
BEGIN_DOC
! rho(alpha) - rho(beta)
END_DOC
one_body_spin_density_mo = one_body_dm_mo_alpha_average - one_body_dm_mo_beta_average
END_PROVIDER
subroutine set_natural_mos
implicit none
BEGIN_DOC
! Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis
END_DOC
character*(64) :: label
double precision, allocatable :: tmp(:,:)
label = "Natural"
call mo_as_svd_vectors_of_mo_matrix(one_body_dm_mo,size(one_body_dm_mo,1),mo_tot_num,mo_tot_num,label)
end
subroutine save_natural_mos
implicit none
BEGIN_DOC
! Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis
END_DOC
call set_natural_mos
call save_mos
end
BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ]
implicit none
BEGIN_DOC
! Weights in the state-average calculation of the density matrix
END_DOC
state_average_weight = 1.d0/dble(N_states)
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_spin_density_ao, (ao_num_align,ao_num) ]
BEGIN_DOC
! one body spin density matrix on the AO basis : rho_AO(alpha) - rho_AO(beta)
END_DOC
implicit none
integer :: i,j,k,l
double precision :: dm_mo
one_body_spin_density_ao = 0.d0
do k = 1, ao_num
do l = 1, ao_num
do i = 1, mo_tot_num
do j = 1, mo_tot_num
dm_mo = one_body_spin_density_mo(j,i)
! if(dabs(dm_mo).le.1.d-10)cycle
one_body_spin_density_ao(l,k) += mo_coef(k,i) * mo_coef(l,j) * dm_mo
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_body_dm_ao_alpha, (ao_num_align,ao_num) ]
&BEGIN_PROVIDER [ double precision, one_body_dm_ao_beta, (ao_num_align,ao_num) ]
BEGIN_DOC
! one body density matrix on the AO basis : rho_AO(alpha) , rho_AO(beta)
END_DOC
implicit none
integer :: i,j,k,l
double precision :: mo_alpha,mo_beta
one_body_dm_ao_alpha = 0.d0
one_body_dm_ao_beta = 0.d0
do k = 1, ao_num
do l = 1, ao_num
do i = 1, mo_tot_num
do j = 1, mo_tot_num
mo_alpha = one_body_dm_mo_alpha_average(j,i)
mo_beta = one_body_dm_mo_beta_average(j,i)
! if(dabs(dm_mo).le.1.d-10)cycle
one_body_dm_ao_alpha(l,k) += mo_coef(k,i) * mo_coef(l,j) * mo_alpha
one_body_dm_ao_beta(l,k) += mo_coef(k,i) * mo_coef(l,j) * mo_beta
enddo
enddo
enddo
enddo
END_PROVIDER