10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-03 18:16:12 +01:00
quantum_package/plugins/DFT_Utils/grid_density.irp.f
2016-07-16 16:09:50 +02:00

166 lines
6.0 KiB
Fortran

BEGIN_PROVIDER [integer, n_points_angular_grid]
implicit none
n_points_angular_grid = 50
END_PROVIDER
BEGIN_PROVIDER [integer, n_points_radial_grid]
implicit none
n_points_radial_grid = 10000
END_PROVIDER
BEGIN_PROVIDER [double precision, angular_quadrature_points, (n_points_angular_grid,3) ]
&BEGIN_PROVIDER [double precision, weights_angular_points, (n_points_angular_grid)]
implicit none
BEGIN_DOC
! weights and grid points for the integration on the angular variables on
! the unit sphere centered on (0,0,0)
! According to the LEBEDEV scheme
END_DOC
call cal_quad(n_points_angular_grid, angular_quadrature_points,weights_angular_points)
include 'constants.include.F'
integer :: i
double precision :: accu
double precision :: degre_rad
!degre_rad = 180.d0/pi
!accu = 0.d0
!do i = 1, n_points_integration_angular_lebedev
! accu += weights_angular_integration_lebedev(i)
! weights_angular_points(i) = weights_angular_integration_lebedev(i) * 2.d0 * pi
! angular_quadrature_points(i,1) = dcos ( degre_rad * theta_angular_integration_lebedev(i)) &
! * dsin ( degre_rad * phi_angular_integration_lebedev(i))
! angular_quadrature_points(i,2) = dsin ( degre_rad * theta_angular_integration_lebedev(i)) &
! * dsin ( degre_rad * phi_angular_integration_lebedev(i))
! angular_quadrature_points(i,3) = dcos ( degre_rad * phi_angular_integration_lebedev(i))
!enddo
!print*,'ANGULAR'
!print*,''
!print*,'accu = ',accu
!ASSERT( dabs(accu - 1.D0) < 1.d-10)
END_PROVIDER
BEGIN_PROVIDER [integer , m_knowles]
implicit none
BEGIN_DOC
! value of the "m" parameter in the equation (7) of the paper of Knowles (JCP, 104, 1996)
END_DOC
m_knowles = 3
END_PROVIDER
BEGIN_PROVIDER [double precision, grid_points_radial, (n_points_radial_grid)]
&BEGIN_PROVIDER [double precision, dr_radial_integral]
implicit none
BEGIN_DOC
! points in [0,1] to map the radial integral [0,\infty]
END_DOC
dr_radial_integral = 1.d0/dble(n_points_radial_grid-1)
integer :: i
do i = 1, n_points_radial_grid-1
grid_points_radial(i) = (i-1) * dr_radial_integral
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_angular_grid,n_points_radial_grid,nucl_num)]
BEGIN_DOC
! points for integration over space
END_DOC
implicit none
integer :: i,j,k
double precision :: dr,x_ref,y_ref,z_ref
double precision :: knowles_function
do i = 1, nucl_num
x_ref = nucl_coord(i,1)
y_ref = nucl_coord(i,2)
z_ref = nucl_coord(i,3)
do j = 1, n_points_radial_grid-1
double precision :: x,r
x = grid_points_radial(j) ! x value for the mapping of the [0, +\infty] to [0,1]
r = knowles_function(alpha_knowles(int(nucl_charge(i))),m_knowles,x) ! value of the radial coordinate for the integration
do k = 1, n_points_angular_grid ! explicit values of the grid points centered around each atom
grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * r
grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * r
grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * r
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, weight_functions_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
BEGIN_DOC
! Weight function at grid points : w_n(r) according to the equation (22) of Becke original paper (JCP, 88, 1988)
! the "n" discrete variable represents the nucleis which in this array is represented by the last dimension
! and the points are labelled by the other dimensions
END_DOC
implicit none
integer :: i,j,k,l,m
double precision :: r(3)
double precision :: accu,cell_function_becke
double precision :: tmp_array(nucl_num)
! run over all points in space
do j = 1, nucl_num ! that are referred to each atom
do k = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
do l = 1, n_points_angular_grid ! for each angular point attached to the "jth" atom
r(1) = grid_points_per_atom(1,l,k,j)
r(2) = grid_points_per_atom(2,l,k,j)
r(3) = grid_points_per_atom(3,l,k,j)
accu = 0.d0
do i = 1, nucl_num ! For each of these points in space, ou need to evaluate the P_n(r)
! function defined for each atom "i" by equation (13) and (21) with k == 3
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
! Then you compute the summ the P_n(r) function for each of the "r" points
accu += tmp_array(i)
enddo
accu = 1.d0/accu
weight_functions_at_grid_points(l,k,j) = tmp_array(j) * accu
! print*,weight_functions_at_grid_points(l,k,j)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, one_body_dm_mo_alpha_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
&BEGIN_PROVIDER [double precision, one_body_dm_mo_beta_at_grid_points, (n_points_angular_grid,n_points_radial_grid,nucl_num) ]
implicit none
integer :: i,j,k,l,m
double precision :: contrib
double precision :: r(3)
double precision :: aos_array(ao_num),mos_array(mo_tot_num)
do j = 1, nucl_num
do k = 1, n_points_radial_grid -1
do l = 1, n_points_angular_grid
one_body_dm_mo_alpha_at_grid_points(l,k,j) = 0.d0
one_body_dm_mo_beta_at_grid_points(l,k,j) = 0.d0
r(1) = grid_points_per_atom(1,l,k,j)
r(2) = grid_points_per_atom(2,l,k,j)
r(3) = grid_points_per_atom(3,l,k,j)
! call give_all_aos_at_r(r,aos_array)
! do i = 1, ao_num
! do m = 1, ao_num
! contrib = aos_array(i) * aos_array(m)
! one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_ao_alpha(i,m) * contrib
! one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_ao_beta(i,m) * contrib
! enddo
! enddo
call give_all_mos_at_r(r,mos_array)
do i = 1, mo_tot_num
do m = 1, mo_tot_num
contrib = mos_array(i) * mos_array(m)
one_body_dm_mo_alpha_at_grid_points(l,k,j) += one_body_dm_mo_alpha(i,m) * contrib
one_body_dm_mo_beta_at_grid_points(l,k,j) += one_body_dm_mo_beta(i,m) * contrib
enddo
enddo
enddo
enddo
enddo
END_PROVIDER