10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-26 12:31:57 +01:00
quantum_package/plugins/mrcepa0/mrcc_stoch_routines.irp.f
2018-02-19 17:15:59 +01:00

714 lines
21 KiB
Fortran

BEGIN_PROVIDER [ integer, fragment_first ]
implicit none
fragment_first = first_det_of_teeth(1)
END_PROVIDER
BEGIN_PROVIDER [ integer, mrcc_stoch_istate ]
implicit none
BEGIN_DOC
! State considered
END_DOC
mrcc_stoch_istate = 1
END_PROVIDER
subroutine ZMQ_mrcc(E, mrcc, delta, delta_s2, relative_error)
!use dress_types
use f77_zmq
implicit none
character(len=64000) :: task
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
integer, external :: omp_get_thread_num
double precision, intent(in) :: relative_error, E(N_states)
double precision, intent(out) :: mrcc(N_states)
double precision, intent(out) :: delta(N_states, N_det_non_ref)
double precision, intent(out) :: delta_s2(N_states, N_det_non_ref)
integer :: i, j, k, Ncp
double precision, external :: omp_get_wtime
double precision :: time
double precision :: w!(N_states)
integer, external :: add_task_to_taskserver
state_average_weight(:) = 0.d0
state_average_weight(mrcc_stoch_istate) = 1.d0
TOUCH state_average_weight
provide nproc fragment_first fragment_count mo_bielec_integrals_in_map mo_mono_elec_integral mrcc_weight psi_selectors
w = 0.d0
w = 1.d0
!call update_psi_average_norm_contrib(w)
print *, '========== ================= ================= ================='
print *, ' Samples Energy Stat. Error Seconds '
print *, '========== ================= ================= ================='
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull, 'mrcc')
integer, external :: zmq_put_psi
integer, external :: zmq_put_N_det_generators
integer, external :: zmq_put_N_det_selectors
integer, external :: zmq_put_dvector
integer, external :: zmq_set_running
if (zmq_put_psi(zmq_to_qp_run_socket,1) == -1) then
stop 'Unable to put psi on ZMQ server'
endif
if (zmq_put_N_det_generators(zmq_to_qp_run_socket, 1) == -1) then
stop 'Unable to put N_det_generators on ZMQ server'
endif
if (zmq_put_N_det_selectors(zmq_to_qp_run_socket, 1) == -1) then
stop 'Unable to put N_det_selectors on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'energy',mrcc_e0_denominator,size(mrcc_e0_denominator)) == -1) then
stop 'Unable to put energy on ZMQ server'
endif
! do i=1,comb_teeth
! print *, "TOOTH", first_det_of_teeth(i+1) - first_det_of_teeth(i)
! end do
integer(ZMQ_PTR), external :: new_zmq_to_qp_run_socket
integer :: ipos
ipos=1
do i=1,N_mrcc_jobs
if(mrcc_jobs(i) > fragment_first) then
write(task(ipos:ipos+20),'(I9,1X,I9,''|'')') 0, mrcc_jobs(i)
ipos += 20
if (ipos > 63980) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
ipos=1
endif
else
do j=1,fragment_count
write(task(ipos:ipos+20),'(I9,1X,I9,''|'')') j, mrcc_jobs(i)
ipos += 20
if (ipos > 63980) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
ipos=1
endif
end do
end if
end do
if (ipos > 1) then
if (add_task_to_taskserver(zmq_to_qp_run_socket,trim(task(1:ipos))) == -1) then
stop 'Unable to add task to task server'
endif
endif
if (zmq_set_running(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Failed in zmq_set_running'
endif
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(nproc+1) &
!$OMP PRIVATE(i)
i = omp_get_thread_num()
if (i==0) then
call mrcc_collector(zmq_socket_pull,E, relative_error, delta, delta_s2, mrcc)
!
else
call mrcc_slave_inproc(i)
endif
!$OMP END PARALLEL
! call mrcc_collector(zmq_socket_pull,E, relative_error, delta, delta_s2, mrcc)
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'mrcc')
print *, '========== ================= ================= ================='
end subroutine
subroutine mrcc_slave_inproc(i)
implicit none
integer, intent(in) :: i
call run_mrcc_slave(1,i,mrcc_e0_denominator)
end
subroutine mrcc_collector(zmq_socket_pull, E, relative_error, delta, delta_s2, mrcc)
use dress_types
use f77_zmq
use bitmasks
implicit none
integer(ZMQ_PTR), intent(in) :: zmq_socket_pull
double precision, intent(in) :: relative_error, E(N_states)
double precision, intent(out) :: mrcc(N_states)
double precision, allocatable :: cp(:,:,:,:)
double precision, intent(out) :: delta(N_states, N_det_non_ref)
double precision, intent(out) :: delta_s2(N_states, N_det_non_ref)
double precision, allocatable :: delta_loc(:,:,:,:), delta_det(:,:,:,:)
double precision, allocatable :: mrcc_detail(:,:)
integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket
integer(ZMQ_PTR) :: zmq_to_qp_run_socket
integer(ZMQ_PTR), external :: new_zmq_pull_socket
integer :: more
integer :: i, j, k, i_state, N, ntask
integer, allocatable :: task_id(:)
integer :: Nindex
integer :: ind
!double precision, save :: time0 = -1.d0
double precision :: time, time0, timeInit, old_tooth
double precision, external :: omp_get_wtime
integer :: cur_cp, old_cur_cp
integer, allocatable :: parts_to_get(:)
logical, allocatable :: actually_computed(:)
integer :: total_computed
integer, parameter :: delta_loc_N = 4
integer :: delta_loc_slot, delta_loc_i(delta_loc_N)
double precision :: mrcc_mwen(N_states, delta_loc_N), lcoef(delta_loc_N)
logical :: ok
double precision :: usf, num
integer(8), save :: rezo = 0_8
usf = 0d0
num = 0d0
print *, "TARGET ERROR :", relative_error
delta = 0d0
delta_s2 = 0d0
allocate(delta_det(N_states, N_det_non_ref, 0:comb_teeth+1, 2))
allocate(cp(N_states, N_det_non_ref, N_cp, 2), mrcc_detail(N_states, N_det_generators))
allocate(delta_loc(N_states, N_det_non_ref, 2, delta_loc_N))
mrcc_detail = 0d0
delta_det = 0d0
!mrcc_detail = mrcc_detail / 0d0
cp = 0d0
total_computed = 0
character*(512) :: task
allocate(actually_computed(N_det_generators), parts_to_get(N_det_generators))
mrcc_mwen =0.d0
parts_to_get(:) = 1
if(fragment_first > 0) then
do i=1,fragment_first
parts_to_get(i) = fragment_count
enddo
endif
actually_computed = .false.
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
allocate(task_id(N_det_generators))
more = 1
time = omp_get_wtime()
time0 = time
timeInit = time
cur_cp = 0
old_cur_cp = 0
delta_loc_slot = 1
delta_loc_i = 0
pullLoop : do while (more == 1)
call pull_mrcc_results(zmq_socket_pull, Nindex, ind, mrcc_mwen(1, delta_loc_slot), delta_loc(1,1,1,delta_loc_slot), task_id, ntask)
!rezo += N_det_non_ref*8*2
!print *, rezo / 1000000_8, "M"
if(Nindex /= 1) stop "tried pull multiple Nindex"
delta_loc_i(delta_loc_slot) = ind
integer, external :: zmq_delete_tasks
if (zmq_delete_tasks(zmq_to_qp_run_socket,zmq_socket_pull,task_id,ntask,more) == -1) then
stop 'Unable to delete tasks'
endif
time = omp_get_wtime()
!time - time0 > 10d0
if(more /= 1 .or. delta_loc_slot == delta_loc_N) then
time0 = time
do i=1,delta_loc_N
if(delta_loc_i(i) /= 0) then
mrcc_detail(:, delta_loc_i(i)) += mrcc_mwen(:,i)
end if
end do
!$OMP PARALLEL DO SCHEDULE(DYNAMIC) DEFAULT(shared) private(j, ok, i, lcoef, k, i_state)
do j=1,N_cp !! optimizable
ok = .false.
do i=1,delta_loc_N
if(delta_loc_i(i) == 0) then
lcoef(i) = 0d0
else
lcoef(i) = cps(delta_loc_i(i), j) / cps_N(j) * mrcc_weight_inv(delta_loc_i(i)) * comb_step
if(lcoef(i) /= 0d0) then
!usf = usf + 1d0
ok = .true.
end if
end if
end do
if(.not. ok) cycle
!num += 1d0
!print *, "USEFUL", usf, num, usf/num
!do j=1,N_cp !! optimizable
! if(cps(ind, j) > 0d0) then
!if(tooth_of_det(ind) < cp_first_tooth(j)) stop "coef on supposedely deterministic det"
double precision :: fac
integer :: toothMwen
logical :: fracted, toothMwendid(0:10000)
!fac = cps(ind, j) / cps_N(j) * mrcc_weight_inv(ind) * comb_step
!!$OMP PARALLEL DO COLLAPSE(2) DEFAULT(shared)
do k=1,N_det_non_ref
do i_state=1,N_states
cp(i_state,k,j,1) += delta_loc(i_state,k,1,1) * lcoef(1) + &
delta_loc(i_state,k,1,2) * lcoef(2) + &
delta_loc(i_state,k,1,3) * lcoef(3) + &
delta_loc(i_state,k,1,4) * lcoef(4)
end do
end do
!!$OMP PARALLEL DO COLLAPSE(2) DEFAULT(shared)
do k=1,N_det_non_ref
do i_state=1,N_states
cp(i_state,k,j,2) += delta_loc(i_state,k,2,1) * lcoef(1) + &
delta_loc(i_state,k,2,2) * lcoef(2) + &
delta_loc(i_state,k,2,3) * lcoef(3) + &
delta_loc(i_state,k,2,4) * lcoef(4)
end do
end do
! end if
end do
!$OMP END PARALLEL DO
!toothmwendid = .false.
do i=1,delta_loc_N
ind = delta_loc_i(i)
if(ind == 0) cycle
toothMwen = tooth_of_det(ind)
!if(.not. toothmwendid(toothMwen)) then
! usf += 1d0
! toothmwendid(toothMwen) = .true.
!end if
fracted = (toothMwen /= 0)
if(fracted) fracted = (ind == first_det_of_teeth(toothMwen))
if(fracted) then
delta_det(:,:,toothMwen-1, 1) += delta_loc(:,:,1,i) * (1d0-fractage(toothMwen))
delta_det(:,:,toothMwen-1, 2) += delta_loc(:,:,2,i) * (1d0-fractage(toothMwen))
delta_det(:,:,toothMwen, 1) += delta_loc(:,:,1,i) * (fractage(toothMwen))
delta_det(:,:,toothMwen, 2) += delta_loc(:,:,2,i) * (fractage(toothMwen))
else
delta_det(:,:,toothMwen, 1) += delta_loc(:,:,1,i)
delta_det(:,:,toothMwen, 2) += delta_loc(:,:,2,i)
end if
parts_to_get(ind) -= 1
if(parts_to_get(ind) == 0) then
actually_computed(ind) = .true.
!print *, "CONTRIB", ind, psi_non_ref_coef(ind,1), mrcc_detail(1, ind)
total_computed += 1
end if
end do
!num += 1d0
!print *, "USEFUL", usf, num, usf/num
delta_loc_slot = 1
delta_loc_i = 0
!if(time - time0 > 10d0 .or. more /= 1) then
cur_cp = N_cp
!if(.not. actually_computed(mrcc_jobs(1))) cycle pullLoop
do i=1,N_det_generators
if(.not. actually_computed(mrcc_jobs(i))) then
if(i==1) then
cur_cp = 0
else
cur_cp = done_cp_at(i-1)
end if
exit
end if
end do
if(cur_cp == 0) then
print *, "no checkpoint reached so far..."
cycle pullLoop
end if
!!!!!!!!!!!!
double precision :: su, su2, eqt, avg, E0, val
integer, external :: zmq_abort
su = 0d0
su2 = 0d0
if(N_states > 1) stop "mrcc_stoch : N_states == 1"
do i=1, int(cps_N(cur_cp))
call get_comb_val(comb(i), mrcc_detail, cur_cp, val)
su += val
su2 += val**2
end do
avg = su / cps_N(cur_cp)
eqt = dsqrt( ((su2 / cps_N(cur_cp)) - avg**2) / cps_N(cur_cp) )
E0 = sum(mrcc_detail(1, :first_det_of_teeth(cp_first_tooth(cur_cp))-1))
if(cp_first_tooth(cur_cp) <= comb_teeth) then
E0 = E0 + mrcc_detail(1, first_det_of_teeth(cp_first_tooth(cur_cp))) * (1d0-fractage(cp_first_tooth(cur_cp)))
end if
print "(I5,F15.7,E12.4,F10.2)", cur_cp, E+E0+avg, eqt, time-timeInit
if ((dabs(eqt) < relative_error .and. cps_N(cur_cp) >= 30) .or. total_computed == N_det_generators) then
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
call sleep(1)
if (zmq_abort(zmq_to_qp_run_socket) == -1) then
print *, irp_here, ': Error in sending abort signal (2)'
endif
endif
endif
else
delta_loc_slot += 1
end if
end do pullLoop
if(total_computed == N_det_generators) then
delta = 0d0
delta_s2 = 0d0
do i=comb_teeth+1,0,-1
delta += delta_det(:,:,i,1)
delta_s2 += delta_det(:,:,i,2)
end do
else
delta = cp(:,:,cur_cp,1)
delta_s2 = cp(:,:,cur_cp,2)
do i=cp_first_tooth(cur_cp)-1,0,-1
delta += delta_det(:,:,i,1)
delta_s2 += delta_det(:,:,i,2)
end do
end if
mrcc = E
call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket)
end subroutine
integer function mrcc_find(v, w, sze, imin, imax)
implicit none
integer, intent(in) :: sze, imin, imax
double precision, intent(in) :: v, w(sze)
integer :: i,l,h
integer, parameter :: block=64
l = imin
h = imax-1
do while(h-l >= block)
i = ishft(h+l,-1)
if(w(i+1) > v) then
h = i-1
else
l = i+1
end if
end do
!DIR$ LOOP COUNT (64)
do mrcc_find=l,h
if(w(mrcc_find) >= v) then
exit
end if
end do
end function
BEGIN_PROVIDER [ integer, gen_per_cp ]
&BEGIN_PROVIDER [ integer, comb_teeth ]
&BEGIN_PROVIDER [ integer, N_cps_max ]
implicit none
comb_teeth = 16
N_cps_max = 64
!comb_per_cp = 64
gen_per_cp = (N_det_generators / N_cps_max) + 1
N_cps_max += 1
!N_cps_max = N_det_generators / comb_per_cp + 1
END_PROVIDER
BEGIN_PROVIDER [ integer, N_cp ]
&BEGIN_PROVIDER [ double precision, cps_N, (N_cps_max) ]
&BEGIN_PROVIDER [ integer, cp_first_tooth, (N_cps_max) ]
&BEGIN_PROVIDER [ integer, done_cp_at, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, cps, (N_det_generators, N_cps_max) ]
&BEGIN_PROVIDER [ integer, N_mrcc_jobs ]
&BEGIN_PROVIDER [ integer, mrcc_jobs, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, comb, (N_det_generators) ]
! subroutine get_carlo_workbatch(Ncp, tbc, cps, done_cp_at)
implicit none
logical, allocatable :: computed(:)
integer :: i, j, last_full, dets(comb_teeth)
integer :: k, l, cur_cp, under_det(comb_teeth+1)
integer, allocatable :: iorder(:), first_cp(:)
double precision :: tmp
allocate(iorder(N_det_generators), first_cp(N_cps_max+1))
allocate(computed(N_det_generators))
first_cp = 1
cps = 0d0
cur_cp = 1
done_cp_at = 0
computed = .false.
N_mrcc_jobs = first_det_of_comb - 1
do i=1, N_mrcc_jobs
mrcc_jobs(i) = i
computed(i) = .true.
end do
l=first_det_of_comb
call RANDOM_NUMBER(comb)
do i=1,N_det_generators
comb(i) = comb(i) * comb_step
!DIR$ FORCEINLINE
call add_comb(comb(i), computed, cps(1, cur_cp), N_mrcc_jobs, mrcc_jobs)
if(N_mrcc_jobs / gen_per_cp > (cur_cp-1) .or. N_mrcc_jobs == N_det_generators) then
!if(mod(i, comb_per_cp) == 0 .or. N_mrcc_jobs == N_det_generators) then
first_cp(cur_cp+1) = N_mrcc_jobs
done_cp_at(N_mrcc_jobs) = cur_cp
cps_N(cur_cp) = dfloat(i)
if(N_mrcc_jobs /= N_det_generators) then
cps(:, cur_cp+1) = cps(:, cur_cp)
cur_cp += 1
end if
!cps(:, cur_cp) = cps(:, cur_cp) / dfloat(i)
if (N_mrcc_jobs == N_det_generators) exit
end if
do while (computed(l))
l=l+1
enddo
k=N_mrcc_jobs+1
mrcc_jobs(k) = l
computed(l) = .True.
N_mrcc_jobs = k
enddo
N_cp = cur_cp
if(N_mrcc_jobs /= N_det_generators .or. N_cp > N_cps_max) then
print *, N_mrcc_jobs, N_det_generators, N_cp, N_cps_max
stop "carlo workcarlo_workbatch"
end if
cur_cp = 0
do i=1,N_mrcc_jobs
if(done_cp_at(i) /= 0) cur_cp = done_cp_at(i)
done_cp_at(i) = cur_cp
end do
under_det = 0
cp_first_tooth = 0
do i=1,N_mrcc_jobs
do j=comb_teeth+1,1,-1
if(mrcc_jobs(i) <= first_det_of_teeth(j)) then
under_det(j) = under_det(j) + 1
if(under_det(j) == first_det_of_teeth(j))then
do l=done_cp_at(i)+1, N_cp
cps(:first_det_of_teeth(j)-1, l) = 0d0
cp_first_tooth(l) = j
end do
cps(first_det_of_teeth(j), done_cp_at(i)+1) = &
cps(first_det_of_teeth(j), done_cp_at(i)+1) * fractage(j)
end if
else
exit
end if
end do
end do
cps(:, N_cp) = 0d0
cp_first_tooth(N_cp) = comb_teeth+1
!iorder = -1132154665
!do i=1,N_cp-1
! call isort(mrcc_jobs(first_cp(i)+1:first_cp(i+1)),iorder,first_cp(i+1)-first_cp(i))
!end do
END_PROVIDER
subroutine get_comb_val(stato, detail, cur_cp, val)
implicit none
integer, intent(in) :: cur_cp
integer :: first
double precision, intent(in) :: stato, detail(N_states, N_det_generators)
double precision, intent(out) :: val
double precision :: curs
integer :: j, k
integer, external :: mrcc_find
curs = 1d0 - stato
val = 0d0
first = cp_first_tooth(cur_cp)
do j = comb_teeth, first, -1
!DIR$ FORCEINLINE
k = mrcc_find(curs, mrcc_cweight,size(mrcc_cweight), first_det_of_teeth(j), first_det_of_teeth(j+1))
!if(k < first_det_of_teeth(first)) exit
if(k == first_det_of_teeth(first)) then
val += detail(1, k) * mrcc_weight_inv(k) * comb_step * fractage(first)
else
val += detail(1, k) * mrcc_weight_inv(k) * comb_step
end if
curs -= comb_step
end do
end subroutine
subroutine get_comb(stato, dets)
implicit none
double precision, intent(in) :: stato
integer, intent(out) :: dets(comb_teeth)
double precision :: curs
integer :: j
integer, external :: mrcc_find
curs = 1d0 - stato
do j = comb_teeth, 1, -1
!DIR$ FORCEINLINE
dets(j) = mrcc_find(curs, mrcc_cweight,size(mrcc_cweight), first_det_of_teeth(j), first_det_of_teeth(j+1))
curs -= comb_step
end do
end subroutine
subroutine add_comb(com, computed, cp, N, tbc)
implicit none
double precision, intent(in) :: com
integer, intent(inout) :: N
double precision, intent(inout) :: cp(N_det_non_ref)
logical, intent(inout) :: computed(N_det_generators)
integer, intent(inout) :: tbc(N_det_generators)
integer :: i, k, l, dets(comb_teeth)
!DIR$ FORCEINLINE
call get_comb(com, dets)
k=N+1
do i = 1, comb_teeth
l = dets(i)
cp(l) += 1d0 ! mrcc_weight_inv(l) * comb_step
if(.not.(computed(l))) then
tbc(k) = l
k = k+1
computed(l) = .true.
end if
end do
N = k-1
end subroutine
BEGIN_PROVIDER [ double precision, mrcc_weight, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, mrcc_weight_inv, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, mrcc_cweight, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, mrcc_cweight_cache, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, fractage, (comb_teeth) ]
&BEGIN_PROVIDER [ double precision, comb_step ]
&BEGIN_PROVIDER [ integer, first_det_of_teeth, (comb_teeth+1) ]
&BEGIN_PROVIDER [ integer, first_det_of_comb ]
&BEGIN_PROVIDER [ integer, tooth_of_det, (N_det_generators) ]
implicit none
integer :: i
double precision :: norm_left, stato
integer, external :: mrcc_find
mrcc_weight(1) = psi_coef_generators(1,1)**2
mrcc_cweight(1) = psi_coef_generators(1,1)**2
do i=1,N_det_generators
mrcc_weight(i) = psi_coef_generators(i,1)**2
enddo
! Important to loop backwards for numerical precision
mrcc_cweight(N_det_generators) = mrcc_weight(N_det_generators)
do i=N_det_generators-1,1,-1
mrcc_cweight(i) = mrcc_weight(i) + mrcc_cweight(i+1)
end do
do i=1,N_det_generators
mrcc_weight(i) = mrcc_weight(i) / mrcc_cweight(1)
mrcc_cweight(i) = mrcc_cweight(i) / mrcc_cweight(1)
enddo
do i=1,N_det_generators-1
mrcc_cweight(i) = 1.d0 - mrcc_cweight(i+1)
end do
mrcc_cweight(N_det_generators) = 1.d0
norm_left = 1d0
comb_step = 1d0/dfloat(comb_teeth)
first_det_of_comb = 1
do i=1,N_det_generators
if(mrcc_weight(i)/norm_left < .25d0*comb_step) then
first_det_of_comb = i
exit
end if
norm_left -= mrcc_weight(i)
end do
first_det_of_comb = max(2,first_det_of_comb)
call write_int(6, first_det_of_comb-1, 'Size of deterministic set')
comb_step = (1d0 - mrcc_cweight(first_det_of_comb-1)) * comb_step
stato = 1d0 - comb_step
iloc = N_det_generators
do i=comb_teeth, 1, -1
integer :: iloc
iloc = mrcc_find(stato, mrcc_cweight, N_det_generators, 1, iloc)
first_det_of_teeth(i) = iloc
fractage(i) = (mrcc_cweight(iloc) - stato) / mrcc_weight(iloc)
stato -= comb_step
end do
first_det_of_teeth(comb_teeth+1) = N_det_generators + 1
first_det_of_teeth(1) = first_det_of_comb
if(first_det_of_teeth(1) /= first_det_of_comb) then
print *, 'Error in ', irp_here
stop "comb provider"
endif
do i=1,N_det_generators
mrcc_weight_inv(i) = 1.d0/mrcc_weight(i)
enddo
tooth_of_det(:first_det_of_teeth(1)-1) = 0
do i=1,comb_teeth
tooth_of_det(first_det_of_teeth(i):first_det_of_teeth(i+1)-1) = i
end do
!double precision :: cur
!fractage = 1d0
!do i=1,comb_teeth-1
! cur = 1d0 - dfloat(i)*comb_step
!end do
END_PROVIDER