mirror of
https://github.com/LCPQ/quantum_package
synced 2025-01-10 21:18:29 +01:00
ca973a1e92
This reverts commit 94f01c0892
.
110 lines
3.6 KiB
Fortran
110 lines
3.6 KiB
Fortran
BEGIN_PROVIDER [ double precision, integral_density_alpha_knowles_becke_per_atom, (nucl_num)]
|
|
&BEGIN_PROVIDER [ double precision, integral_density_beta_knowles_becke_per_atom, (nucl_num)]
|
|
implicit none
|
|
double precision :: accu
|
|
integer :: i,j,k,l
|
|
double precision :: x
|
|
double precision :: integrand(n_points_angular_grid), weights(n_points_angular_grid)
|
|
double precision :: f_average_angular_alpha,f_average_angular_beta
|
|
double precision :: derivative_knowles_function,knowles_function
|
|
|
|
! Run over all nuclei in order to perform the Voronoi partition
|
|
! according ot equation (6) of the paper of Becke (JCP, (88), 1988)
|
|
! Here the m index is referred to the w_m(r) weight functions of equation (22)
|
|
! Run over all points of integrations : there are
|
|
! n_points_radial_grid (i) * n_points_angular_grid (k)
|
|
do j = 1, nucl_num
|
|
integral_density_alpha_knowles_becke_per_atom(j) = 0.d0
|
|
integral_density_beta_knowles_becke_per_atom(j) = 0.d0
|
|
do i = 1, n_points_radial_grid-1
|
|
! Angular integration over the solid angle Omega for a FIXED angular coordinate "r"
|
|
f_average_angular_alpha = 0.d0
|
|
f_average_angular_beta = 0.d0
|
|
do k = 1, n_points_angular_grid
|
|
f_average_angular_alpha += weights_angular_points(k) * one_body_dm_mo_alpha_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
|
|
f_average_angular_beta += weights_angular_points(k) * one_body_dm_mo_beta_at_grid_points(k,i,j) * weight_functions_at_grid_points(k,i,j)
|
|
enddo
|
|
!
|
|
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
|
|
double precision :: contrib_integration
|
|
! print*,m_knowles
|
|
contrib_integration = derivative_knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x) &
|
|
*knowles_function(alpha_knowles(int(nucl_charge(j))),m_knowles,x)**2
|
|
integral_density_alpha_knowles_becke_per_atom(j) += contrib_integration *f_average_angular_alpha
|
|
integral_density_beta_knowles_becke_per_atom(j) += contrib_integration *f_average_angular_beta
|
|
enddo
|
|
integral_density_alpha_knowles_becke_per_atom(j) *= dr_radial_integral
|
|
integral_density_beta_knowles_becke_per_atom(j) *= dr_radial_integral
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
double precision function knowles_function(alpha,m,x)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! function proposed by Knowles (JCP, 104, 1996) for distributing the radial points :
|
|
! the Log "m" function ( equation (7) in the paper )
|
|
END_DOC
|
|
double precision, intent(in) :: alpha,x
|
|
integer, intent(in) :: m
|
|
knowles_function = -alpha * dlog(1.d0-x**m)
|
|
end
|
|
|
|
double precision function derivative_knowles_function(alpha,m,x)
|
|
implicit none
|
|
BEGIN_DOC
|
|
! derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points
|
|
END_DOC
|
|
double precision, intent(in) :: alpha,x
|
|
integer, intent(in) :: m
|
|
derivative_knowles_function = alpha * dble(m) * x**(m-1) / (1.d0 - x**m)
|
|
end
|
|
|
|
BEGIN_PROVIDER [double precision, alpha_knowles, (100)]
|
|
implicit none
|
|
integer :: i
|
|
BEGIN_DOC
|
|
! recommended values for the alpha parameters according to the paper of Knowles (JCP, 104, 1996)
|
|
! as a function of the nuclear charge
|
|
END_DOC
|
|
|
|
! H-He
|
|
alpha_knowles(1) = 5.d0
|
|
alpha_knowles(2) = 5.d0
|
|
|
|
! Li-Be
|
|
alpha_knowles(3) = 7.d0
|
|
alpha_knowles(4) = 7.d0
|
|
|
|
! B-Ne
|
|
do i = 5, 10
|
|
alpha_knowles(i) = 5.d0
|
|
enddo
|
|
|
|
! Na-Mg
|
|
do i = 11, 12
|
|
alpha_knowles(i) = 7.d0
|
|
enddo
|
|
|
|
! Al-Ar
|
|
do i = 13, 18
|
|
alpha_knowles(i) = 5.d0
|
|
enddo
|
|
|
|
! K-Ca
|
|
do i = 19, 20
|
|
alpha_knowles(i) = 7.d0
|
|
enddo
|
|
|
|
! Sc-Zn
|
|
do i = 21, 30
|
|
alpha_knowles(i) = 5.d0
|
|
enddo
|
|
|
|
! Ga-Kr
|
|
do i = 31, 36
|
|
alpha_knowles(i) = 7.d0
|
|
enddo
|
|
|
|
END_PROVIDER
|