10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-05 11:00:10 +01:00
quantum_package/plugins/Full_CI_ZMQ/selection.irp.f

1201 lines
38 KiB
Fortran

use bitmasks
BEGIN_PROVIDER [ integer, fragment_count ]
implicit none
BEGIN_DOC
! Number of fragments for the deterministic part
END_DOC
fragment_count = (elec_alpha_num-n_core_orb)**2
END_PROVIDER
subroutine assert(cond, msg)
character(*), intent(in) :: msg
logical, intent(in) :: cond
if(.not. cond) then
print *, "assert failed: "//msg
stop
end if
end subroutine
subroutine get_mask_phase(det, phasemask)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: det(N_int, 2)
integer, intent(out) :: phasemask(2,N_int*bit_kind_size)
integer :: s, ni, i
logical :: change
phasemask = 0_1
do s=1,2
change = .false.
do ni=1,N_int
do i=0,bit_kind_size-1
if(BTEST(det(ni, s), i)) then
change = .not. change
endif
if(change) then
phasemask(s, ishft(ni-1,bit_kind_shift) + i + 1) = 1_1
endif
end do
end do
end do
end subroutine
subroutine select_connected(i_generator,E0,pt2,b,subset)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator, subset
type(selection_buffer), intent(inout) :: b
double precision, intent(inout) :: pt2(N_states)
integer :: k,l
double precision, intent(in) :: E0(N_states)
integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, allocatable :: fock_diag_tmp(:,:)
allocate(fock_diag_tmp(2,mo_tot_num+1))
call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int)
do l=1,N_generators_bitmask
do k=1,N_int
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole,l), psi_det_generators(k,1,i_generator))
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole,l), psi_det_generators(k,2,i_generator))
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part,l), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part,l), not(psi_det_generators(k,2,i_generator)) )
enddo
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,b,subset)
enddo
deallocate(fock_diag_tmp)
end subroutine
double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2)
use bitmasks
implicit none
integer, intent(in) :: phasemask(2,*)
integer, intent(in) :: s1, s2, h1, h2, p1, p2
logical :: change
integer :: np1
integer :: np
double precision, save :: res(0:1) = (/1d0, -1d0/)
np1 = phasemask(s1,h1) + phasemask(s1,p1) + phasemask(s2,h2) + phasemask(s2,p2)
np = np1
if(p1 < h1) np = np + 1
if(p2 < h2) np = np + 1
if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1
get_phase_bi = res(iand(np,1))
end
subroutine get_m2(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer, intent(in) :: phasemask(2,N_int*bit_kind_size)
logical, intent(in) :: bannedOrb(mo_tot_num)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: vect(N_states, mo_tot_num)
integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2)
integer :: i, j, h1, h2, p1, p2, sfix, hfix, pfix, hmob, pmob, puti
double precision :: hij
double precision, external :: get_phase_bi, mo_bielec_integral
integer, parameter :: turn3_2(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer, parameter :: turn2(2) = (/2,1/)
if(h(0,sp) == 2) then
h1 = h(1, sp)
h2 = h(2, sp)
do i=1,3
puti = p(i, sp)
if(bannedOrb(puti)) cycle
p1 = p(turn3_2(1,i), sp)
p2 = p(turn3_2(2,i), sp)
hij = mo_bielec_integral(p1, p2, h1, h2) - mo_bielec_integral(p2, p1, h1, h2)
hij *= get_phase_bi(phasemask, sp, sp, h1, p1, h2, p2)
vect(:, puti) += hij * coefs
end do
else if(h(0,sp) == 1) then
sfix = turn2(sp)
hfix = h(1,sfix)
pfix = p(1,sfix)
hmob = h(1,sp)
do j=1,2
puti = p(j, sp)
if(bannedOrb(puti)) cycle
pmob = p(turn2(j), sp)
hij = mo_bielec_integral(pfix, pmob, hfix, hmob)
hij *= get_phase_bi(phasemask, sp, sfix, hmob, pmob, hfix, pfix)
vect(:, puti) += hij * coefs
end do
else
puti = p(1,sp)
if(.not. bannedOrb(puti)) then
sfix = turn2(sp)
p1 = p(1,sfix)
p2 = p(2,sfix)
h1 = h(1,sfix)
h2 = h(2,sfix)
hij = (mo_bielec_integral(p1,p2,h1,h2) - mo_bielec_integral(p2,p1,h1,h2))
hij *= get_phase_bi(phasemask, sfix, sfix, h1, p1, h2, p2)
vect(:, puti) += hij * coefs
end if
end if
end
subroutine get_m1(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer, intent(in) :: phasemask(2,N_int*bit_kind_size)
logical, intent(in) :: bannedOrb(mo_tot_num)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: vect(N_states, mo_tot_num)
integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2)
integer :: i, hole, p1, p2, sh
logical :: ok
logical, allocatable :: lbanned(:)
integer(bit_kind) :: det(N_int, 2)
double precision :: hij
double precision, external :: get_phase_bi, mo_bielec_integral
allocate (lbanned(mo_tot_num))
lbanned = bannedOrb
sh = 1
if(h(0,2) == 1) sh = 2
hole = h(1, sh)
lbanned(p(1,sp)) = .true.
if(p(0,sp) == 2) lbanned(p(2,sp)) = .true.
!print *, "SPm1", sp, sh
p1 = p(1, sp)
if(sp == sh) then
p2 = p(2, sp)
lbanned(p2) = .true.
do i=1,hole-1
if(lbanned(i)) cycle
hij = (mo_bielec_integral(p1, p2, i, hole) - mo_bielec_integral(p2, p1, i, hole))
hij *= get_phase_bi(phasemask, sp, sp, i, p1, hole, p2)
vect(1:N_states,i) += hij * coefs(1:N_states)
end do
do i=hole+1,mo_tot_num
if(lbanned(i)) cycle
hij = (mo_bielec_integral(p1, p2, hole, i) - mo_bielec_integral(p2, p1, hole, i))
hij *= get_phase_bi(phasemask, sp, sp, hole, p1, i, p2)
vect(1:N_states,i) += hij * coefs(1:N_states)
end do
call apply_particle(mask, sp, p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
vect(1:N_states, p2) += hij * coefs(1:N_states)
else
p2 = p(1, sh)
do i=1,mo_tot_num
if(lbanned(i)) cycle
hij = mo_bielec_integral(p1, p2, i, hole)
hij *= get_phase_bi(phasemask, sp, sh, i, p1, hole, p2)
vect(1:N_states,i) += hij * coefs(1:N_states)
end do
end if
deallocate(lbanned)
call apply_particle(mask, sp, p1, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
vect(1:N_states, p1) += hij * coefs(1:N_states)
end
subroutine get_m0(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer, intent(in) :: phasemask(2,N_int*bit_kind_size)
logical, intent(in) :: bannedOrb(mo_tot_num)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: vect(N_states, mo_tot_num)
integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2)
integer :: i
logical :: ok
logical, allocatable :: lbanned(:)
integer(bit_kind) :: det(N_int, 2)
double precision :: hij
allocate(lbanned(mo_tot_num))
lbanned = bannedOrb
lbanned(p(1,sp)) = .true.
do i=1,mo_tot_num
if(lbanned(i)) cycle
call apply_particle(mask, sp, i, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
vect(1:N_states, i) += hij * coefs(1:N_states)
end do
deallocate(lbanned)
end
subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,buf,subset)
use bitmasks
use selection_types
implicit none
BEGIN_DOC
! WARNING /!\ : It is assumed that the generators and selectors are psi_det_sorted
END_DOC
integer, intent(in) :: i_generator, subset
integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2)
double precision, intent(in) :: fock_diag_tmp(mo_tot_num)
double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states)
type(selection_buffer), intent(inout) :: buf
integer :: h1,h2,s1,s2,s3,i1,i2,ib,sp,k,i,j,nt,ii
integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2), pmask(N_int, 2)
logical :: fullMatch, ok
integer(bit_kind) :: mobMask(N_int, 2), negMask(N_int, 2)
integer,allocatable :: preinteresting(:), prefullinteresting(:), interesting(:), fullinteresting(:)
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
double precision, allocatable :: mat(:,:,:)
logical :: monoAdo, monoBdo
integer :: maskInd
integer(bit_kind), allocatable:: preinteresting_det(:,:,:)
allocate (preinteresting_det(N_int,2,N_det))
PROVIDE fragment_count
monoAdo = .true.
monoBdo = .true.
do k=1,N_int
hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1))
hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2))
particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1))
particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2))
enddo
integer :: N_holes(2), N_particles(2)
integer :: hole_list(N_int*bit_kind_size,2)
integer :: particle_list(N_int*bit_kind_size,2)
call bitstring_to_list_ab(hole , hole_list , N_holes , N_int)
call bitstring_to_list_ab(particle, particle_list, N_particles, N_int)
integer :: l_a, nmax
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
allocate (indices(N_det), &
exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
PROVIDE psi_bilinear_matrix_columns_loc psi_det_alpha_unique psi_det_beta_unique
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order
k=1
do i=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,i), &
psi_det_generators(1,1,i_generator), exc_degree(i), N_int)
enddo
do j=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,j), &
psi_det_generators(1,2,i_generator), nt, N_int)
if (nt > 2) cycle
do l_a=psi_bilinear_matrix_columns_loc(j), psi_bilinear_matrix_columns_loc(j+1)-1
i = psi_bilinear_matrix_rows(l_a)
if (nt + exc_degree(i) <= 4) then
indices(k) = psi_det_sorted_order(psi_bilinear_matrix_order(l_a))
k=k+1
endif
enddo
enddo
do i=1,N_det_beta_unique
call get_excitation_degree_spin(psi_det_beta_unique(1,i), &
psi_det_generators(1,2,i_generator), exc_degree(i), N_int)
enddo
do j=1,N_det_alpha_unique
call get_excitation_degree_spin(psi_det_alpha_unique(1,j), &
psi_det_generators(1,1,i_generator), nt, N_int)
if (nt > 1) cycle
do l_a=psi_bilinear_matrix_transp_rows_loc(j), psi_bilinear_matrix_transp_rows_loc(j+1)-1
i = psi_bilinear_matrix_transp_columns(l_a)
if (exc_degree(i) < 3) cycle
if (nt + exc_degree(i) <= 4) then
indices(k) = psi_det_sorted_order( &
psi_bilinear_matrix_order( &
psi_bilinear_matrix_transp_order(l_a)))
k=k+1
endif
enddo
enddo
deallocate(exc_degree)
nmax=k-1
allocate(iorder(nmax))
do i=1,nmax
iorder(i) = i
enddo
call isort(indices,iorder,nmax)
deallocate(iorder)
allocate(preinteresting(0:N_det_selectors), prefullinteresting(0:N_det), &
interesting(0:N_det_selectors), fullinteresting(0:N_det))
preinteresting(0) = 0
prefullinteresting(0) = 0
do i=1,N_int
negMask(i,1) = not(psi_det_generators(i,1,i_generator))
negMask(i,2) = not(psi_det_generators(i,2,i_generator))
end do
do k=1,nmax
i = indices(k)
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
do j=2,N_int
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted(j,1,i))
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
end do
if(nt <= 4) then
if(i <= N_det_selectors) then
preinteresting(0) += 1
preinteresting(preinteresting(0)) = i
do j=1,N_int
preinteresting_det(j,1,preinteresting(0)) = psi_det_sorted(j,1,i)
preinteresting_det(j,2,preinteresting(0)) = psi_det_sorted(j,2,i)
enddo
else if(nt <= 2) then
prefullinteresting(0) += 1
prefullinteresting(prefullinteresting(0)) = i
end if
end if
end do
deallocate(indices)
allocate(minilist(N_int, 2, N_det_selectors), fullminilist(N_int, 2, N_det))
allocate(banned(mo_tot_num, mo_tot_num,2), bannedOrb(mo_tot_num, 2))
allocate (mat(N_states, mo_tot_num, mo_tot_num))
maskInd = -1
integer :: nb_count
do s1=1,2
do i1=N_holes(s1),1,-1 ! Generate low excitations first
h1 = hole_list(i1,s1)
call apply_hole(psi_det_generators(1,1,i_generator), s1,h1, pmask, ok, N_int)
negMask = not(pmask)
interesting(0) = 0
fullinteresting(0) = 0
do ii=1,preinteresting(0)
select case (N_int)
case (1)
mobMask(1,1) = iand(negMask(1,1), preinteresting_det(1,1,ii))
mobMask(1,2) = iand(negMask(1,2), preinteresting_det(1,2,ii))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
case (2)
mobMask(1:2,1) = iand(negMask(1:2,1), preinteresting_det(1:2,1,ii))
mobMask(1:2,2) = iand(negMask(1:2,2), preinteresting_det(1:2,2,ii))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2)) + &
popcnt(mobMask(2, 1)) + popcnt(mobMask(2, 2))
case (3)
mobMask(1:3,1) = iand(negMask(1:3,1), preinteresting_det(1:3,1,ii))
mobMask(1:3,2) = iand(negMask(1:3,2), preinteresting_det(1:3,2,ii))
nt = 0
do j=3,1,-1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
endif
if (mobMask(j,2) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
end do
case (4)
mobMask(1:4,1) = iand(negMask(1:4,1), preinteresting_det(1:4,1,ii))
mobMask(1:4,2) = iand(negMask(1:4,2), preinteresting_det(1:4,2,ii))
nt = 0
do j=4,1,-1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
endif
if (mobMask(j,2) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
end do
case default
mobMask(1:N_int,1) = iand(negMask(1:N_int,1), preinteresting_det(1:N_int,1,ii))
mobMask(1:N_int,2) = iand(negMask(1:N_int,2), preinteresting_det(1:N_int,2,ii))
nt = 0
do j=N_int,1,-1
if (mobMask(j,1) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 1))
if (nt > 4) exit
endif
if (mobMask(j,2) /= 0_bit_kind) then
nt = nt+ popcnt(mobMask(j, 2))
if (nt > 4) exit
endif
end do
end select
if(nt <= 4) then
i = preinteresting(ii)
interesting(0) += 1
interesting(interesting(0)) = i
minilist(1,1,interesting(0)) = preinteresting_det(1,1,ii)
minilist(1,2,interesting(0)) = preinteresting_det(1,2,ii)
do j=2,N_int
minilist(j,1,interesting(0)) = preinteresting_det(j,1,ii)
minilist(j,2,interesting(0)) = preinteresting_det(j,2,ii)
enddo
if(nt <= 2) then
fullinteresting(0) += 1
fullinteresting(fullinteresting(0)) = i
fullminilist(1,1,fullinteresting(0)) = preinteresting_det(1,1,ii)
fullminilist(1,2,fullinteresting(0)) = preinteresting_det(1,2,ii)
do j=2,N_int
fullminilist(j,1,fullinteresting(0)) = preinteresting_det(j,1,ii)
fullminilist(j,2,fullinteresting(0)) = preinteresting_det(j,2,ii)
enddo
end if
end if
end do
do ii=1,prefullinteresting(0)
i = prefullinteresting(ii)
nt = 0
mobMask(1,1) = iand(negMask(1,1), psi_det_sorted(1,1,i))
mobMask(1,2) = iand(negMask(1,2), psi_det_sorted(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
if (nt > 2) cycle
do j=N_int,2,-1
mobMask(j,1) = iand(negMask(j,1), psi_det_sorted(j,1,i))
mobMask(j,2) = iand(negMask(j,2), psi_det_sorted(j,2,i))
nt = nt+ popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
if (nt > 2) exit
end do
if(nt <= 2) then
fullinteresting(0) += 1
fullinteresting(fullinteresting(0)) = i
fullminilist(1,1,fullinteresting(0)) = psi_det_sorted(1,1,i)
fullminilist(1,2,fullinteresting(0)) = psi_det_sorted(1,2,i)
do j=2,N_int
fullminilist(j,1,fullinteresting(0)) = psi_det_sorted(j,1,i)
fullminilist(j,2,fullinteresting(0)) = psi_det_sorted(j,2,i)
enddo
end if
end do
do s2=s1,2
sp = s1
if(s1 /= s2) sp = 3
ib = 1
if(s1 == s2) ib = i1+1
monoAdo = .true.
do i2=N_holes(s2),ib,-1 ! Generate low excitations first
h2 = hole_list(i2,s2)
call apply_hole(pmask, s2,h2, mask, ok, N_int)
banned = .false.
do j=1,mo_tot_num
bannedOrb(j, 1) = .true.
bannedOrb(j, 2) = .true.
enddo
do s3=1,2
do i=1,N_particles(s3)
bannedOrb(particle_list(i,s3), s3) = .false.
enddo
enddo
if(s1 /= s2) then
if(monoBdo) then
bannedOrb(h1,s1) = .false.
end if
if(monoAdo) then
bannedOrb(h2,s2) = .false.
monoAdo = .false.
end if
end if
maskInd += 1
if(subset == 0 .or. mod(maskInd, fragment_count) == (subset-1)) then
call spot_isinwf(mask, fullminilist, i_generator, fullinteresting(0), banned, fullMatch, fullinteresting)
if(fullMatch) cycle
mat = 0d0
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, mat, buf)
end if
enddo
if(s1 /= s2) monoBdo = .false.
enddo
enddo
enddo
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
deallocate(minilist, fullminilist, banned, bannedOrb,mat)
end subroutine
subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, mat, buf)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: i_generator, sp, h1, h2
double precision, intent(in) :: mat(N_states, mo_tot_num, mo_tot_num)
logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num)
double precision, intent(in) :: fock_diag_tmp(mo_tot_num)
double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states)
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, min_e_pert,tmp
double precision, external :: diag_H_mat_elem_fock
logical, external :: detEq
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
do p1=1,mo_tot_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_tot_num
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
if(mat(1, p1, p2) == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
min_e_pert = 0d0
do istate=1,N_states
delta_E = E0(istate) - Hii
val = mat(istate, p1, p2) + mat(istate, p1, p2)
tmp = dsqrt(delta_E * delta_E + val * val)
if (delta_E < 0.d0) then
tmp = -tmp
endif
e_pert = 0.5d0 * (tmp - delta_E)
pt2(istate) = pt2(istate) + e_pert
min_e_pert = min(e_pert,min_e_pert)
! ci(istate) = e_pert / mat(istate, p1, p2)
end do
if(min_e_pert <= buf%mini) then
call add_to_selection_buffer(buf, det, min_e_pert)
end if
end do
end do
end
subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
use bitmasks
implicit none
integer, intent(in) :: sp, i_gen, N_sel
integer, intent(in) :: interesting(0:N_sel)
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel)
logical, intent(inout) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num, 2)
double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num)
integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt
integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2)
integer :: phasemask(2,N_int*bit_kind_size)
! logical :: bandon
!
! bandon = .false.
PROVIDE psi_selectors_coef_transp
mat = 0d0
do i=1,N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
do i=1, N_sel ! interesting(0)
!i = interesting(ii)
if (interesting(i) < 0) then
stop 'prefetch interesting(i)'
endif
mobMask(1,1) = iand(negMask(1,1), det(1,1,i))
mobMask(1,2) = iand(negMask(1,2), det(1,2,i))
nt = popcnt(mobMask(1, 1)) + popcnt(mobMask(1, 2))
if(nt > 4) cycle
do j=2,N_int
mobMask(j,1) = iand(negMask(j,1), det(j,1,i))
mobMask(j,2) = iand(negMask(j,2), det(j,2,i))
nt = nt + popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2))
end do
if(nt > 4) cycle
if (interesting(i) == i_gen) then
if(sp == 3) then
do j=1,mo_tot_num
do k=1,mo_tot_num
banned(j,k,2) = banned(k,j,1)
enddo
enddo
else
do k=1,mo_tot_num
do l=k+1,mo_tot_num
banned(l,k,1) = banned(k,l,1)
end do
end do
end if
end if
call bitstring_to_list_in_selection(mobMask(1,1), p(1,1), p(0,1), N_int)
call bitstring_to_list_in_selection(mobMask(1,2), p(1,2), p(0,2), N_int)
perMask(1,1) = iand(mask(1,1), not(det(1,1,i)))
perMask(1,2) = iand(mask(1,2), not(det(1,2,i)))
do j=2,N_int
perMask(j,1) = iand(mask(j,1), not(det(j,1,i)))
perMask(j,2) = iand(mask(j,2), not(det(j,2,i)))
end do
call bitstring_to_list_in_selection(perMask(1,1), h(1,1), h(0,1), N_int)
call bitstring_to_list_in_selection(perMask(1,2), h(1,2), h(0,2), N_int)
if (interesting(i) >= i_gen) then
call get_mask_phase(psi_det_sorted(1,1,interesting(i)), phasemask)
if(nt == 4) then
call get_d2(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
else if(nt == 3) then
call get_d1(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
else
call get_d0(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
end if
else
if(nt == 4) call past_d2(banned, p, sp)
if(nt == 3) call past_d1(bannedOrb, p)
end if
end do
end
subroutine get_d2(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer, intent(in) :: phasemask(2,N_int*bit_kind_size)
logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num,2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi, mo_bielec_integral
integer :: i, j, tip, ma, mi, puti, putj
integer :: h1, h2, p1, p2, i1, i2
double precision :: hij, phase
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
integer, parameter :: turn2(2) = (/2, 1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
bant = 1
tip = p(0,1) * p(0,2)
ma = sp
if(p(0,1) > p(0,2)) ma = 1
if(p(0,1) < p(0,2)) ma = 2
mi = mod(ma, 2) + 1
if(sp == 3) then
if(ma == 2) bant = 2
if(tip == 3) then
puti = p(1, mi)
do i = 1, 3
putj = p(i, ma)
if(banned(putj,puti,bant)) cycle
i1 = turn3(1,i)
i2 = turn3(2,i)
p1 = p(i1, ma)
p2 = p(i2, ma)
h1 = h(1, ma)
h2 = h(2, ma)
hij = (mo_bielec_integral(p1, p2, h1, h2) - mo_bielec_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2)
if(ma == 1) then
mat(:, putj, puti) += coefs * hij
else
mat(:, puti, putj) += coefs * hij
end if
end do
else
h1 = h(1,1)
h2 = h(1,2)
do j = 1,2
putj = p(j, 2)
p2 = p(turn2(j), 2)
do i = 1,2
puti = p(i, 1)
if(banned(puti,putj,bant)) cycle
p1 = p(turn2(i), 1)
hij = mo_bielec_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2)
mat(:, puti, putj) += coefs * hij
end do
end do
end if
else
if(tip == 0) then
h1 = h(1, ma)
h2 = h(2, ma)
do i=1,3
puti = p(i, ma)
do j=i+1,4
putj = p(j, ma)
if(banned(puti,putj,1)) cycle
i1 = turn2d(1, i, j)
i2 = turn2d(2, i, j)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = (mo_bielec_integral(p1, p2, h1, h2) - mo_bielec_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2)
mat(:, puti, putj) += coefs * hij
end do
end do
else if(tip == 3) then
h1 = h(1, mi)
h2 = h(1, ma)
p1 = p(1, mi)
do i=1,3
puti = p(turn3(1,i), ma)
putj = p(turn3(2,i), ma)
if(banned(puti,putj,1)) cycle
p2 = p(i, ma)
hij = mo_bielec_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2)
mat(:, min(puti, putj), max(puti, putj)) += coefs * hij
end do
else ! tip == 4
puti = p(1, sp)
putj = p(2, sp)
if(.not. banned(puti,putj,1)) then
p1 = p(1, mi)
p2 = p(2, mi)
h1 = h(1, mi)
h2 = h(2, mi)
hij = (mo_bielec_integral(p1, p2, h1, h2) - mo_bielec_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2)
mat(:, puti, putj) += coefs * hij
end if
end if
end if
end
subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer,intent(in) :: phasemask(2,N_int*bit_kind_size)
logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision :: hij, tmp_row(N_states, mo_tot_num), tmp_row2(N_states, mo_tot_num)
double precision, external :: get_phase_bi, mo_bielec_integral
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
allocate (lbanned(mo_tot_num, 2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
tmp_row = 0d0
do putj=1, hfix-1
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_bielec_integral(p1, p2, putj, hfix)-mo_bielec_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2)
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
end do
do putj=hfix+1, mo_tot_num
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_bielec_integral(p1, p2, hfix, putj)-mo_bielec_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2)
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
end do
if(ma == 1) then
mat(1:N_states,1:mo_tot_num,puti) += tmp_row(1:N_states,1:mo_tot_num)
else
mat(1:N_states,puti,1:mo_tot_num) += tmp_row(1:N_states,1:mo_tot_num)
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_tot_num
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = mo_bielec_integral(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix)
tmp_row(:,puti) += hij * coefs
end if
putj = p2
if(.not. banned(putj,puti,bant)) then
hij = mo_bielec_integral(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix)
tmp_row2(:,puti) += hij * coefs
end if
end do
if(mi == 1) then
mat(:,:,p1) += tmp_row(:,:)
mat(:,:,p2) += tmp_row2(:,:)
else
mat(:,p1,:) += tmp_row(:,:)
mat(:,p2,:) += tmp_row2(:,:)
end if
else
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
tmp_row = 0d0
do putj=1,hfix-1
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_bielec_integral(p1, p2, putj, hfix)-mo_bielec_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2)
tmp_row(:,putj) += hij * coefs
end do
do putj=hfix+1,mo_tot_num
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_bielec_integral(p1, p2, hfix, putj)-mo_bielec_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2)
tmp_row(:,putj) += hij * coefs
end do
mat(:, :puti-1, puti) += tmp_row(:,:puti-1)
mat(:, puti, puti:) += tmp_row(:,puti:)
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_tot_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = mo_bielec_integral(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1)
tmp_row(:,puti) += hij * coefs
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = mo_bielec_integral(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2)
tmp_row2(:,puti) += hij * coefs
end if
end do
mat(:,:p2-1,p2) += tmp_row(:,:p2-1)
mat(:,p2,p2:) += tmp_row(:,p2:)
mat(:,:p1-1,p1) += tmp_row2(:,:p1-1)
mat(:,p1,p1:) += tmp_row2(:,p1:)
end if
end if
deallocate(lbanned)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
mat(:, p1, p2) += coefs * hij
end do
end do
end
subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer, intent(in) :: phasemask(2,N_int*bit_kind_size)
logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
integer :: i, j, s, h1, h2, p1, p2, puti, putj
double precision :: hij, phase
double precision, external :: get_phase_bi, mo_bielec_integral
logical :: ok
integer :: bant
bant = 1
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p1=1, mo_tot_num
if(bannedOrb(p1, 1)) cycle
do p2=1, mo_tot_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2)
hij = mo_bielec_integral(p1, p2, h1, h2) * phase
end if
mat(:, p1, p2) += coefs(:) * hij
end do
end do
else ! AA BB
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_tot_num
if(bannedOrb(puti, sp)) cycle
do putj=puti+1, mo_tot_num
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
hij = (mo_bielec_integral(p1, p2, puti, putj) - mo_bielec_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2)
end if
mat(:, puti, putj) += coefs(:) * hij
end do
end do
end if
end
subroutine past_d1(bannedOrb, p)
use bitmasks
implicit none
logical, intent(inout) :: bannedOrb(mo_tot_num, 2)
integer, intent(in) :: p(0:4, 2)
integer :: i,s
do s = 1, 2
do i = 1, p(0, s)
bannedOrb(p(i, s), s) = .true.
end do
end do
end
subroutine past_d2(banned, p, sp)
use bitmasks
implicit none
logical, intent(inout) :: banned(mo_tot_num, mo_tot_num)
integer, intent(in) :: p(0:4, 2), sp
integer :: i,j
if(sp == 3) then
do i=1,p(0,1)
do j=1,p(0,2)
banned(p(i,1), p(j,2)) = .true.
end do
end do
else
do i=1,p(0, sp)
do j=1,i-1
banned(p(j,sp), p(i,sp)) = .true.
banned(p(i,sp), p(j,sp)) = .true.
end do
end do
end if
end
subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting)
use bitmasks
implicit none
integer, intent(in) :: i_gen, N
integer, intent(in) :: interesting(0:N)
integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N)
logical, intent(inout) :: banned(mo_tot_num, mo_tot_num)
logical, intent(out) :: fullMatch
integer :: i, j, na, nb, list(3)
integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2)
fullMatch = .false.
do i=1,N_int
negMask(i,1) = not(mask(i,1))
negMask(i,2) = not(mask(i,2))
end do
genl : do i=1, N
do j=1, N_int
if(iand(det(j,1,i), mask(j,1)) /= mask(j, 1)) cycle genl
if(iand(det(j,2,i), mask(j,2)) /= mask(j, 2)) cycle genl
end do
if(interesting(i) < i_gen) then
fullMatch = .true.
return
end if
do j=1, N_int
myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1))
myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2))
end do
call bitstring_to_list_in_selection(myMask(1,1), list(1), na, N_int)
call bitstring_to_list_in_selection(myMask(1,2), list(na+1), nb, N_int)
banned(list(1), list(2)) = .true.
end do genl
end
subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
use bitmasks
implicit none
BEGIN_DOC
! Gives the inidices(+1) of the bits set to 1 in the bit string
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint)
integer, intent(out) :: list(Nint*bit_kind_size)
integer, intent(out) :: n_elements
integer :: i, ishift
integer(bit_kind) :: l
n_elements = 0
ishift = 2
do i=1,Nint
l = string(i)
do while (l /= 0_bit_kind)
n_elements = n_elements+1
list(n_elements) = ishift+popcnt(l-1_bit_kind) - popcnt(l)
l = iand(l,l-1_bit_kind)
enddo
ishift = ishift + bit_kind_size
enddo
end