10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-08-16 01:28:39 +02:00
quantum_package/plugins/Perturbation/pt2_equations.irp.f

165 lines
5.3 KiB
Fortran

BEGIN_TEMPLATE
subroutine pt2_epstein_nesbet ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! compute the standard Epstein-Nesbet perturbative first order coefficient and second order energetic contribution
!
! for the various N_st states.
!
! c_pert(i) = <psi(i)|H|det_pert>/( E(i) - <det_pert|H|det_pert> )
!
! e_2_pert(i) = <psi(i)|H|det_pert>^2/( E(i) - <det_pert|H|det_pert> )
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem, h
double precision :: i_H_psi_array(N_st)
PROVIDE selection_criterion
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
!call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
h = diag_H_mat_elem(det_pert,Nint)
do i =1,N_st
if(CI_electronic_energy(i)>h.and.CI_electronic_energy(i).ne.0.d0)then
c_pert(i) = -1.d0
e_2_pert(i) = selection_criterion*selection_criterion_factor*2.d0
else if (dabs(CI_electronic_energy(i) - h) > 1.d-6) then
c_pert(i) = i_H_psi_array(i) / (CI_electronic_energy(i) - h)
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
else
c_pert(i) = -1.d0
e_2_pert(i) = -dabs(i_H_psi_array(i))
H_pert_diag(i) = h
endif
enddo
end
subroutine pt2_epstein_nesbet_2x2 ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! compute the Epstein-Nesbet 2x2 diagonalization coefficient and energetic contribution
!
! for the various N_st states.
!
! e_2_pert(i) = 0.5 * (( <det_pert|H|det_pert> - E(i) ) - sqrt( ( <det_pert|H|det_pert> - E(i)) ^2 + 4 <psi(i)|H|det_pert>^2 )
!
! c_pert(i) = e_2_pert(i)/ <psi(i)|H|det_pert>
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem,delta_e, h
double precision :: i_H_psi_array(N_st)
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
PROVIDE CI_electronic_energy
!call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
h = diag_H_mat_elem(det_pert,Nint)
do i =1,N_st
if (i_H_psi_array(i) /= 0.d0) then
delta_e = h - CI_electronic_energy(i)
if (delta_e > 0.d0) then
e_2_pert(i) = 0.5d0 * (delta_e - dsqrt(delta_e * delta_e + 4.d0 * i_H_psi_array(i) * i_H_psi_array(i)))
else
e_2_pert(i) = 0.5d0 * (delta_e + dsqrt(delta_e * delta_e + 4.d0 * i_H_psi_array(i) * i_H_psi_array(i)))
endif
if (dabs(i_H_psi_array(i)) > 1.d-6) then
c_pert(i) = e_2_pert(i)/i_H_psi_array(i)
else
c_pert(i) = 0.d0
endif
H_pert_diag(i) = h*c_pert(i)*c_pert(i)
else
e_2_pert(i) = 0.d0
c_pert(i) = 0.d0
H_pert_diag(i) = 0.d0
endif
enddo
end
subroutine pt2_moller_plesset ($arguments)
use bitmasks
implicit none
$declarations
BEGIN_DOC
! compute the standard Moller-Plesset perturbative first order coefficient and second order energetic contribution
!
! for the various n_st states.
!
! c_pert(i) = <psi(i)|H|det_pert>/(difference of orbital energies)
!
! e_2_pert(i) = <psi(i)|H|det_pert>^2/(difference of orbital energies)
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase,delta_e,h
double precision :: i_H_psi_array(N_st)
integer :: h1,h2,p1,p2,s1,s2
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
call get_excitation(ref_bitmask,det_pert,exc,degree,phase,Nint)
if (degree == 2) then
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
delta_e = Fock_matrix_diag_mo(h1) + Fock_matrix_diag_mo(h2) - &
(Fock_matrix_diag_mo(p1) + Fock_matrix_diag_mo(p2))
delta_e = 1.d0/delta_e
else if (degree == 1) then
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
delta_e = Fock_matrix_diag_mo(h1) - Fock_matrix_diag_mo(p1)
delta_e = 1.d0/delta_e
else
delta_e = 0.d0
endif
call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det,psi_selectors_size,n_st,i_H_psi_array)
h = diag_H_mat_elem(det_pert,Nint)
do i =1,n_st
H_pert_diag(i) = h
c_pert(i) = i_H_psi_array(i) *delta_e
e_2_pert(i) = c_pert(i) * i_H_psi_array(i)
enddo
end
SUBST [ arguments, declarations ]
det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,N_st,minilist,idx_minilist,N_minilist ;
integer, intent(in) :: Nint
integer, intent(in) :: ndet
integer, intent(in) :: N_st
integer, intent(in) :: N_minilist
integer(bit_kind), intent(in) :: det_pert(Nint,2)
double precision , intent(out) :: c_pert(N_st)
double precision , intent(out) :: e_2_pert(N_st)
double precision, intent(out) :: H_pert_diag(N_st)
integer, intent(in) :: idx_minilist(0:N_det_selectors)
integer(bit_kind), intent(in) :: minilist(Nint,2,N_det_selectors)
;;
END_TEMPLATE