mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-08 07:03:57 +01:00
270 lines
8.0 KiB
Fortran
270 lines
8.0 KiB
Fortran
BEGIN_PROVIDER [integer, pert_determinants, (N_states, psi_det_size) ]
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states,psi_det_size) ]
|
|
&BEGIN_PROVIDER [ double precision, lambda_pert, (N_states,psi_det_size) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
|
|
END_DOC
|
|
integer :: i,k,j
|
|
double precision :: ihpsi(N_states), hii,delta_e_eff,ihpsi_current(N_states),hij
|
|
integer :: i_ok,i_pert,i_pert_count
|
|
i_ok = 0
|
|
|
|
double precision :: phase_restart(N_states),tmp
|
|
do k = 1, N_states
|
|
phase_restart(k) = dsign(1.d0,psi_ref_coef_restart(1,k)/psi_ref_coef(1,k))
|
|
enddo
|
|
i_pert_count = 0
|
|
|
|
do i=1,N_det_non_ref
|
|
call i_h_psi(psi_non_ref(1,1,i), psi_ref_restart, psi_ref_coef_restart, N_int, N_det_ref,&
|
|
size(psi_ref_coef_restart,1), n_states, ihpsi)
|
|
call i_H_j(psi_non_ref(1,1,i),psi_non_ref(1,1,i),N_int,hii)
|
|
! TODO --- Test perturbatif ------
|
|
do k=1,N_states
|
|
lambda_pert(k,i) = 1.d0 / (psi_ref_energy_diagonalized(k)-hii)
|
|
! TODO : i_h_psi peut sortir de la boucle?
|
|
call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,size(psi_ref_coef,1), n_states, ihpsi_current)
|
|
if (ihpsi_current(k) == 0.d0) then
|
|
ihpsi_current(k) = 1.d-32
|
|
endif
|
|
tmp = psi_non_ref_coef(i,k)/ihpsi_current(k)
|
|
i_pert = 0
|
|
! Perturbation only if 1st order < 0.5 x second order
|
|
if((ihpsi(k) * lambda_pert(k,i)) < 0.5d0 * psi_non_ref_coef_restart(i,k) )then
|
|
i_pert = 1
|
|
else
|
|
do j = 1, N_det_ref
|
|
call i_H_j(psi_non_ref(1,1,i),psi_ref(1,1,j),N_int,hij)
|
|
! Perturbation diverges when hij*tmp > 0.5
|
|
if(dabs(hij * tmp).ge.0.5d0)then
|
|
i_pert_count +=1
|
|
i_pert = 1
|
|
exit
|
|
endif
|
|
enddo
|
|
endif
|
|
if( i_pert == 1)then
|
|
pert_determinants(k,i) = i_pert
|
|
endif
|
|
if(pert_determinants(k,i) == 1)then
|
|
i_ok +=1
|
|
lambda_mrcc(k,i) = lambda_pert(k,i)
|
|
else
|
|
lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi_current(k)
|
|
endif
|
|
enddo
|
|
! TODO --- Fin test perturbatif ------
|
|
enddo
|
|
!if(oscillations)then
|
|
! print*,'AVERAGING the lambda_mrcc with those of the previous iterations'
|
|
! do i = 1, N_det_non_ref
|
|
! do k = 1, N_states
|
|
|
|
! double precision :: tmp
|
|
! tmp = lambda_mrcc(k,i)
|
|
! lambda_mrcc(k,i) += lambda_mrcc_tmp(k,i)
|
|
! lambda_mrcc(k,i) = lambda_mrcc(k,i) * 0.5d0
|
|
! if(dabs(tmp - lambda_mrcc(k,i)).ge.1.d-9)then
|
|
! print*,''
|
|
! print*,'i = ',i
|
|
! print*,'psi_non_ref_coef(i,k) = ',psi_non_ref_coef(i,k)
|
|
! print*,'lambda_mrcc(k,i) = ',lambda_mrcc(k,i)
|
|
! print*,' tmp = ',tmp
|
|
! endif
|
|
! enddo
|
|
! enddo
|
|
!endif
|
|
print*,'N_det_non_ref = ',N_det_non_ref
|
|
print*,'Number of Perturbatively treated determinants = ',i_ok
|
|
print*,'i_pert_count = ',i_pert_count
|
|
print*,'psi_coef_ref_ratio = ',psi_ref_coef(2,1)/psi_ref_coef(1,1)
|
|
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, lambda_mrcc_tmp, (N_states,psi_det_size) ]
|
|
implicit none
|
|
lambda_mrcc_tmp = 0.d0
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ logical, oscillations ]
|
|
implicit none
|
|
oscillations = .False.
|
|
END_PROVIDER
|
|
|
|
|
|
|
|
|
|
!BEGIN_PROVIDER [ double precision, delta_ij_non_ref, (N_det_non_ref, N_det_non_ref,N_states) ]
|
|
!implicit none
|
|
!BEGIN_DOC
|
|
!! Dressing matrix in SD basis
|
|
!END_DOC
|
|
!delta_ij_non_ref = 0.d0
|
|
!call H_apply_mrcc_simple(delta_ij_non_ref,N_det_non_ref)
|
|
!END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, delta_ij, (N_det_ref,N_det_non_ref,N_states) ]
|
|
&BEGIN_PROVIDER [ double precision, delta_ii, (N_det_ref,N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Dressing matrix in N_det basis
|
|
END_DOC
|
|
integer :: i,j,m
|
|
delta_ij = 0.d0
|
|
delta_ii = 0.d0
|
|
call H_apply_mrcc(delta_ij,delta_ii,N_det_ref,N_det_non_ref)
|
|
double precision :: max_delta
|
|
double precision :: accu
|
|
integer :: imax,jmax
|
|
max_delta = 0.d0
|
|
accu = 0.d0
|
|
do i = 1, N_det_ref
|
|
do j = 1, N_det_non_ref
|
|
accu += psi_non_ref_coef(j,1) * psi_ref_coef(i,1) * delta_ij(i,j,1)
|
|
if(dabs(delta_ij(i,j,1)).gt.max_delta)then
|
|
max_delta = dabs(delta_ij(i,j,1))
|
|
imax = i
|
|
jmax = j
|
|
endif
|
|
enddo
|
|
enddo
|
|
print*,''
|
|
print*,''
|
|
print*,'<psi| Delta H |psi> = ',accu
|
|
print*,'MAX VAL OF DRESING = ',delta_ij(imax,jmax,1)
|
|
print*,'imax,jmax = ',imax,jmax
|
|
print*,'psi_ref_coef(imax,1) = ',psi_ref_coef(imax,1)
|
|
print*,'psi_non_ref_coef(jmax,1) = ',psi_non_ref_coef(jmax,1)
|
|
do i = 1, N_det_ref
|
|
print*,'delta_ii(i,1) = ',delta_ii(i,1)
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Dressed H with Delta_ij
|
|
END_DOC
|
|
integer :: i, j,istate,ii,jj
|
|
do istate = 1,N_states
|
|
do j=1,N_det
|
|
do i=1,N_det
|
|
h_matrix_dressed(i,j,istate) = h_matrix_all_dets(i,j)
|
|
enddo
|
|
enddo
|
|
do ii = 1, N_det_ref
|
|
i =idx_ref(ii)
|
|
h_matrix_dressed(i,i,istate) += delta_ii(ii,istate)
|
|
do jj = 1, N_det_non_ref
|
|
j =idx_non_ref(jj)
|
|
h_matrix_dressed(i,j,istate) += delta_ij(ii,jj,istate)
|
|
h_matrix_dressed(j,i,istate) += delta_ij(ii,jj,istate)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
END_PROVIDER
|
|
|
|
|
|
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
|
|
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
|
|
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Eigenvectors/values of the CI matrix
|
|
END_DOC
|
|
integer :: i,j
|
|
|
|
do j=1,N_states_diag
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
|
enddo
|
|
enddo
|
|
|
|
if (diag_algorithm == "Davidson") then
|
|
|
|
integer :: istate
|
|
istate = 1
|
|
call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed,&
|
|
size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,istate)
|
|
|
|
else if (diag_algorithm == "Lapack") then
|
|
|
|
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
|
|
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
|
allocate (eigenvalues(N_det))
|
|
call lapack_diag(eigenvalues,eigenvectors, &
|
|
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
|
CI_electronic_energy_dressed(:) = 0.d0
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,1) = eigenvectors(i,1)
|
|
enddo
|
|
integer :: i_state
|
|
double precision :: s2
|
|
i_state = 0
|
|
if (s2_eig) then
|
|
do j=1,N_det
|
|
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
|
|
if(dabs(s2-expected_s2).le.0.3d0)then
|
|
i_state += 1
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
|
|
enddo
|
|
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
|
|
CI_eigenvectors_s2_dressed(i_state) = s2
|
|
endif
|
|
if (i_state.ge.N_states_diag) then
|
|
exit
|
|
endif
|
|
enddo
|
|
else
|
|
do j=1,N_states_diag
|
|
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
|
|
i_state += 1
|
|
do i=1,N_det
|
|
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
|
|
enddo
|
|
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
|
|
CI_eigenvectors_s2_dressed(i_state) = s2
|
|
enddo
|
|
endif
|
|
deallocate(eigenvectors,eigenvalues)
|
|
endif
|
|
|
|
END_PROVIDER
|
|
|
|
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
|
|
implicit none
|
|
BEGIN_DOC
|
|
! N_states lowest eigenvalues of the dressed CI matrix
|
|
END_DOC
|
|
|
|
integer :: j
|
|
character*(8) :: st
|
|
call write_time(output_determinants)
|
|
do j=1,N_states_diag
|
|
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
|
|
enddo
|
|
|
|
END_PROVIDER
|
|
|
|
subroutine diagonalize_CI_dressed
|
|
implicit none
|
|
BEGIN_DOC
|
|
! Replace the coefficients of the CI states by the coefficients of the
|
|
! eigenstates of the CI matrix
|
|
END_DOC
|
|
integer :: i,j
|
|
do j=1,N_states_diag
|
|
do i=1,N_det
|
|
psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
|
|
enddo
|
|
enddo
|
|
SOFT_TOUCH psi_coef
|
|
|
|
end
|