10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-11-08 23:23:57 +01:00
quantum_package/plugins/Perturbation/delta_rho_perturbation.irp.f

78 lines
3.0 KiB
Fortran

subroutine pt2_delta_rho_one_point(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st,minilist,idx_minilist,N_minilist)
use bitmasks
implicit none
integer, intent(in) :: Nint,ndet,n_st
integer(bit_kind), intent(in) :: det_pert(Nint,2)
double precision , intent(out) :: c_pert(n_st),e_2_pert(n_st),H_pert_diag(N_st)
double precision :: i_O1_psi_array(N_st)
double precision :: i_H_psi_array(N_st)
integer, intent(in) :: N_minilist
integer, intent(in) :: idx_minilist(0:N_det_selectors)
integer(bit_kind), intent(in) :: minilist(Nint,2,N_det_selectors)
BEGIN_DOC
! compute the perturbatibe contribution to the Integrated Spin density at z = z_one point of one determinant
!
! for the various n_st states, at various level of theory.
!
! c_pert(i) = <psi(i)|H|det_pert>/(<psi(i)|H|psi(i)> - <det_pert|H|det_pert>)
!
! e_2_pert(i) = c_pert(i) * <det_pert|O|psi(i)>
!
! H_pert_diag(i) = c_pert(i)^2 * <det_pert|O|det_pert>
!
! To get the contribution of the first order :
!
! <O_1> = sum(over i) e_2_pert(i)
!
! To get the contribution of the diagonal elements of the second order :
!
! [ <O_0> + <O_1> + sum(over i) H_pert_diag(i) ] / [1. + sum(over i) c_pert(i) **2]
!
END_DOC
integer :: i,j
double precision :: diag_H_mat_elem,diag_o1_mat_elem_alpha_beta
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase,delta_e,h,oii,diag_o1_mat_elem
integer :: h1,h2,p1,p2,s1,s2
ASSERT (Nint == N_int)
ASSERT (Nint > 0)
! call get_excitation_degree(HF_bitmask,det_pert,degree,N_int)
! if(degree.gt.degree_max_generators+1)then
! H_pert_diag = 0.d0
! e_2_pert = 0.d0
! c_pert = 0.d0
! return
! endif
call i_O1_psi_alpha_beta(mo_integrated_delta_rho_one_point,det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_O1_psi_array)
!call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array)
call i_H_psi_minilist(det_pert,minilist,idx_minilist,N_minilist,psi_selectors_coef,Nint,N_minilist,psi_selectors_size,N_st,i_H_psi_array)
h = diag_H_mat_elem(det_pert,Nint)
oii = diag_O1_mat_elem_alpha_beta(mo_integrated_delta_rho_one_point,det_pert,N_int)
do i =1,N_st
if(CI_electronic_energy(i)>h.and.CI_electronic_energy(i).ne.0.d0)then
c_pert(i) = -1.d0
e_2_pert(i) = selection_criterion*selection_criterion_factor*2.d0
else if (dabs(CI_electronic_energy(i) - h) > 1.d-6) then
c_pert(i) = i_H_psi_array(i) / (CI_electronic_energy(i) - h)
e_2_pert(i) = c_pert(i) * (i_O1_psi_array(i)+i_O1_psi_array(i) ) + c_pert(i) * c_pert(i) * oii
H_pert_diag(i) = c_pert(i) * (i_O1_psi_array(i)+i_O1_psi_array(i) )
else
c_pert(i) = -1.d0
e_2_pert(i) = -dabs(i_H_psi_array(i))
H_pert_diag(i) = c_pert(i) * i_O1_psi_array(i)
endif
enddo
end