10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-27 15:42:30 +02:00
quantum_package/plugins/MRCC_Utils_new/mrcc_utils.irp.f

180 lines
5.3 KiB
Fortran

BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states,psi_det_size) ]
&BEGIN_PROVIDER [ double precision, lambda_pert, (N_states,psi_det_size) ]
implicit none
BEGIN_DOC
! cm/<Psi_0|H|D_m> or perturbative 1/Delta_E(m)
END_DOC
integer :: i,k
double precision :: ihpsi(N_states), hii
integer :: i_ok
i_ok = 0
do i=1,N_det_non_ref
call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,&
size(psi_ref_coef,1), n_states, ihpsi)
call i_h_j(psi_non_ref(1,1,i),psi_non_ref(1,1,i),N_int,hii)
do k=1,N_states
lambda_pert(k,i) = 1.d0 / (psi_ref_energy_diagonalized(k)-hii)
if (dabs(ihpsi(k)).le.1.d-3) then
i_ok +=1
lambda_mrcc(k,i) = lambda_pert(k,i)
else
lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi(k)
endif
enddo
enddo
print*,'N_det_non_ref = ',N_det_non_ref
print*,'Number of Perturbatively treated determinants = ',i_ok
print*,'psi_coef_ref_ratio = ',psi_ref_coef(2,1)/psi_ref_coef(1,1)
END_PROVIDER
!BEGIN_PROVIDER [ double precision, delta_ij_non_ref, (N_det_non_ref, N_det_non_ref,N_states) ]
!implicit none
!BEGIN_DOC
!! Dressing matrix in SD basis
!END_DOC
!delta_ij_non_ref = 0.d0
!call H_apply_mrcc_simple(delta_ij_non_ref,N_det_non_ref)
!END_PROVIDER
BEGIN_PROVIDER [ double precision, delta_ij, (N_det_ref,N_det_non_ref,N_states) ]
&BEGIN_PROVIDER [ double precision, delta_ii, (N_det_ref,N_states) ]
implicit none
BEGIN_DOC
! Dressing matrix in N_det basis
END_DOC
integer :: i,j,m
delta_ij = 0.d0
delta_ii = 0.d0
call mrcc_dress(N_det_ref,N_det_non_ref,N_states,delta_ij,delta_ii)
write(33,*)delta_ij
write(34,*)delta_ii
END_PROVIDER
BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ]
implicit none
BEGIN_DOC
! Dressed H with Delta_ij
END_DOC
integer :: i, j,istate,ii,jj
do istate = 1,N_states
do j=1,N_det
do i=1,N_det
h_matrix_dressed(i,j,istate) = h_matrix_all_dets(i,j)
enddo
enddo
do ii = 1, N_det_ref
i =idx_ref(ii)
h_matrix_dressed(i,i,istate) += delta_ii(ii,istate)
do jj = 1, N_det_non_ref
j =idx_non_ref(jj)
h_matrix_dressed(i,j,istate) += delta_ij(ii,jj,istate)
h_matrix_dressed(j,i,istate) += delta_ij(ii,jj,istate)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
implicit none
BEGIN_DOC
! Eigenvectors/values of the CI matrix
END_DOC
integer :: i,j
do j=1,N_states_diag
do i=1,N_det
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
enddo
enddo
if (diag_algorithm == "Davidson") then
integer :: istate
istate = 1
call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed,&
size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,istate)
else if (diag_algorithm == "Lapack") then
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
CI_electronic_energy_dressed(:) = 0.d0
do i=1,N_det
CI_eigenvectors_dressed(i,1) = eigenvectors(i,1)
enddo
integer :: i_state
double precision :: s2
i_state = 0
if (s2_eig) then
do j=1,N_det
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
if(dabs(s2-expected_s2).le.0.3d0)then
i_state += 1
do i=1,N_det
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state) = s2
endif
if (i_state.ge.N_states_diag) then
exit
endif
enddo
else
do j=1,N_states_diag
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
i_state += 1
do i=1,N_det
CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j)
enddo
CI_electronic_energy_dressed(i_state) = eigenvalues(j)
CI_eigenvectors_s2_dressed(i_state) = s2
enddo
endif
deallocate(eigenvectors,eigenvalues)
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
implicit none
BEGIN_DOC
! N_states lowest eigenvalues of the dressed CI matrix
END_DOC
integer :: j
character*(8) :: st
call write_time(output_determinants)
do j=1,N_states_diag
CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion
enddo
END_PROVIDER
subroutine diagonalize_CI_dressed
implicit none
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
integer :: i,j
do j=1,N_states_diag
do i=1,N_det
psi_coef(i,j) = CI_eigenvectors_dressed(i,j)
enddo
enddo
SOFT_TOUCH psi_coef
end