10
0
mirror of https://github.com/LCPQ/quantum_package synced 2025-01-12 05:58:24 +01:00
quantum_package/plugins/MRPT_Utils/psi_active_prov.irp.f

580 lines
19 KiB
Fortran

use bitmasks
BEGIN_PROVIDER [integer(bit_kind), psi_active, (N_int,2,psi_det_size)]
BEGIN_DOC
! active part of psi
END_DOC
implicit none
use bitmasks
integer :: i,j,k,l
provide cas_bitmask
!print*, 'psi_active '
do i = 1, N_det
do j = 1, N_int
psi_active(j,1,i) = iand(psi_ref(j,1,i),cas_bitmask(j,1,1))
psi_active(j,2,i) = iand(psi_ref(j,2,i),cas_bitmask(j,1,1))
enddo
enddo
END_PROVIDER
subroutine give_holes_and_particles_in_active_space(det_1,det_2,n_holes_spin,n_particles_spin,n_holes,n_particles,&
holes_active_list,particles_active_list)
implicit none
use bitmasks
integer(bit_kind),intent(in) :: det_1(N_int,2)
integer(bit_kind),intent(in ) :: det_2(N_int,2)
integer, intent(out) :: n_holes_spin(2),n_particles_spin(2)
integer, intent(out) :: n_holes,n_particles
integer, intent(out) :: holes_active_list(2 * n_act_orb,2)
integer, intent(out) :: particles_active_list(2 * n_act_orb,2)
integer :: i
integer(bit_kind) :: holes(N_int,2)
integer(bit_kind) :: particles(N_int,2)
integer(bit_kind) :: det_tmp_2(N_int,2),det_tmp_1(N_int,2)
BEGIN_DOC
! returns the holes and particles operators WITHIN THE ACTIVE SPACE
! that connect det_1 and det_2. By definition, the holes/particles
! are such that one starts from det_1 and goes to det_2
!
! n_holes is the total number of holes
! n_particles is the total number of particles
! n_holes_spin is the number of number of holes per spin (1=alpha, 2=beta)
! n_particles_spin is the number of number of particles per spin (1=alpha, 2=beta)
! holes_active_list is the index of the holes per spin, that ranges from 1 to n_act_orb
! particles_active_list is the index of the particles per spin, that ranges from 1 to n_act_orb
END_DOC
call give_active_part_determinant(det_1,det_tmp_1)
call give_active_part_determinant(det_2,det_tmp_2)
do i = 1, N_int
holes(i,1) = iand(det_tmp_1(i,1),xor(det_tmp_1(i,1),det_tmp_2(i,1)))
holes(i,2) = iand(det_tmp_1(i,2),xor(det_tmp_1(i,2),det_tmp_2(i,2)))
particles(i,1) = iand(det_tmp_2(i,1),xor(det_tmp_1(i,1),det_tmp_2(i,1)))
particles(i,2) = iand(det_tmp_2(i,2),xor(det_tmp_1(i,2),det_tmp_2(i,2)))
enddo
integer :: holes_list(N_int*bit_kind_size,2)
holes_list = 0
call bitstring_to_list(holes(1,1), holes_list(1,1), n_holes_spin(1), N_int)
call bitstring_to_list(holes(1,2), holes_list(1,2), n_holes_spin(2), N_int)
n_holes = 0
do i = 1, n_holes_spin(1)
n_holes +=1
holes_active_list(i,1) = list_act_reverse(holes_list(i,1))
enddo
do i = 1, n_holes_spin(2)
n_holes +=1
holes_active_list(i,2) = list_act_reverse(holes_list(i,2))
enddo
integer :: particles_list(N_int*bit_kind_size,2)
particles_list = 0
call bitstring_to_list(particles(1,1), particles_list(1,1), n_particles_spin(1), N_int)
call bitstring_to_list(particles(1,2), particles_list(1,2), n_particles_spin(2), N_int)
n_particles = 0
do i = 1, n_particles_spin(1)
n_particles += 1
particles_active_list(i,1) = list_act_reverse(particles_list(i,1))
enddo
do i = 1, n_particles_spin(2)
n_particles += 1
particles_active_list(i,2) = list_act_reverse(particles_list(i,2))
enddo
end
subroutine give_holes_in_inactive_space(det_1,n_holes_spin,n_holes,holes_list)
BEGIN_DOC
! returns the holes operators WITHIN THE INACTIVE SPACE
! that has lead to det_1.
!
! n_holes is the total number of holes
! n_holes_spin is the number of number of holes per spin (1=alpha, 2=beta)
! holes_inactive_list is the index of the holes per spin, that ranges from 1 to mo_tot_num
END_DOC
implicit none
use bitmasks
integer(bit_kind),intent(in) :: det_1(N_int,2)
integer, intent(out) :: n_holes_spin(2)
integer, intent(out) :: n_holes
integer, intent(out) :: holes_list(N_int*bit_kind_size,2)
integer :: i
integer(bit_kind) :: holes(N_int,2)
integer(bit_kind) :: det_tmp_1(N_int,2)
call give_core_inactive_part_determinant(det_1,det_tmp_1)
do i = 1, N_int
holes(i,1) = iand(reunion_of_core_inact_bitmask(i,1),xor(det_tmp_1(i,1),reunion_of_core_inact_bitmask(i,1)))
holes(i,2) = iand(reunion_of_core_inact_bitmask(i,2),xor(det_tmp_1(i,2),reunion_of_core_inact_bitmask(i,2)))
enddo
holes_list = 0
call bitstring_to_list(holes(1,1), holes_list(1,1), n_holes_spin(1), N_int)
call bitstring_to_list(holes(1,2), holes_list(1,2), n_holes_spin(2), N_int)
n_holes = n_holes_spin(1) + n_holes_spin(2)
end
subroutine give_particles_in_virt_space(det_1,n_particles_spin,n_particles,particles_list)
BEGIN_DOC
! returns the holes operators WITHIN THE VIRTUAL SPACE
! that has lead to det_1.
!
! n_particles is the total number of particles
! n_particles_spin is the number of number of particles per spin (1=alpha, 2=beta)
! particles_inactive_list is the index of the particles per spin, that ranges from 1 to mo_tot_num
END_DOC
implicit none
use bitmasks
integer(bit_kind),intent(in) :: det_1(N_int,2)
integer, intent(out) :: n_particles_spin(2)
integer, intent(out) :: n_particles
integer, intent(out) :: particles_list(N_int*bit_kind_size,2)
integer :: i
integer(bit_kind) :: det_tmp_1(N_int,2)
integer(bit_kind) :: particles(N_int,2)
call give_virt_part_determinant(det_1,det_tmp_1)
do i = 1, N_int
particles(i,1) = iand(virt_bitmask(i,1),det_tmp_1(i,1))
particles(i,2) = iand(virt_bitmask(i,2),det_tmp_1(i,2))
enddo
particles_list = 0
call bitstring_to_list(particles(1,1), particles_list(1,1), n_particles_spin(1), N_int)
call bitstring_to_list(particles(1,2), particles_list(1,2), n_particles_spin(2), N_int)
n_particles = n_particles_spin(1) + n_particles_spin(2)
end
subroutine get_delta_e_dyall(det_1,det_2,delta_e_final)
BEGIN_DOC
! routine that returns the delta_e with the Moller Plesset and Dyall operators
!
! with det_1 being a determinant from the cas, and det_2 being a perturber
!
! Delta_e(det_1,det_2) = sum (hole) epsilon(hole) + sum(part) espilon(part) + delta_e(act)
!
! where hole is necessary in the inactive, part necessary in the virtuals
!
! and delta_e(act) is obtained from the contracted application of the excitation
!
! operator in the active space that lead from det_1 to det_2
END_DOC
implicit none
use bitmasks
double precision, intent(out) :: delta_e_final(N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer :: i,j,k,l
integer :: i_state
integer :: n_holes_spin(2)
integer :: n_holes
integer :: holes_list(N_int*bit_kind_size,2)
double precision :: delta_e_inactive(N_states)
integer :: i_hole_inact
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree>2)then
delta_e_final = -1.d+10
return
endif
call give_holes_in_inactive_space(det_2,n_holes_spin,n_holes,holes_list)
delta_e_inactive = 0.d0
do i = 1, n_holes_spin(1)
i_hole_inact = holes_list(i,1)
do i_state = 1, N_states
delta_e_inactive += fock_core_inactive_total_spin_trace(i_hole_inact,i_state)
enddo
enddo
do i = 1, n_holes_spin(2)
i_hole_inact = holes_list(i,2)
do i_state = 1, N_states
delta_e_inactive(i_state) += fock_core_inactive_total_spin_trace(i_hole_inact,i_state)
enddo
enddo
double precision :: delta_e_virt(N_states)
integer :: i_part_virt
integer :: n_particles_spin(2)
integer :: n_particles
integer :: particles_list(N_int*bit_kind_size,2)
call give_particles_in_virt_space(det_2,n_particles_spin,n_particles,particles_list)
delta_e_virt = 0.d0
do i = 1, n_particles_spin(1)
i_part_virt = particles_list(i,1)
do i_state = 1, N_states
delta_e_virt += fock_virt_total_spin_trace(i_part_virt,i_state)
enddo
enddo
do i = 1, n_particles_spin(2)
i_part_virt = particles_list(i,2)
do i_state = 1, N_states
delta_e_virt += fock_virt_total_spin_trace(i_part_virt,i_state)
enddo
enddo
integer :: n_holes_spin_act(2),n_particles_spin_act(2)
integer :: n_holes_act,n_particles_act
integer :: holes_active_list(2*n_act_orb,2)
integer :: holes_active_list_spin_traced(4*n_act_orb)
integer :: particles_active_list(2*n_act_orb,2)
integer :: particles_active_list_spin_traced(4*n_act_orb)
double precision :: delta_e_act(N_states)
delta_e_act = 0.d0
call give_holes_and_particles_in_active_space(det_1,det_2,n_holes_spin_act,n_particles_spin_act, &
n_holes_act,n_particles_act,holes_active_list,particles_active_list)
integer :: icount,icountbis
integer :: hole_list_practical(2,elec_num_tab(1)+elec_num_tab(2)), particle_list_practical(2,elec_num_tab(1)+elec_num_tab(2))
icount = 0
icountbis = 0
do i = 1, n_holes_spin_act(1)
icount += 1
icountbis += 1
hole_list_practical(1,icountbis) = 1
hole_list_practical(2,icountbis) = holes_active_list(i,1)
holes_active_list_spin_traced(icount) = holes_active_list(i,1)
enddo
do i = 1, n_holes_spin_act(2)
icount += 1
icountbis += 1
hole_list_practical(1,icountbis) = 2
hole_list_practical(2,icountbis) = holes_active_list(i,2)
holes_active_list_spin_traced(icount) = holes_active_list(i,2)
enddo
if(icount .ne. n_holes_act) then
print*,''
print*, icount, n_holes_act
print * , 'pb in holes_active_list_spin_traced !!'
stop
endif
icount = 0
icountbis = 0
do i = 1, n_particles_spin_act(1)
icount += 1
icountbis += 1
particle_list_practical(1,icountbis) = 1
particle_list_practical(2,icountbis) = particles_active_list(i,1)
particles_active_list_spin_traced(icount) = particles_active_list(i,1)
enddo
do i = 1, n_particles_spin_act(2)
icount += 1
icountbis += 1
particle_list_practical(1,icountbis) = 2
particle_list_practical(2,icountbis) = particles_active_list(i,2)
particles_active_list_spin_traced(icount) = particles_active_list(i,2)
enddo
if(icount .ne. n_particles_act) then
print*, icount, n_particles_act
print * , 'pb in particles_active_list_spin_traced !!'
stop
endif
integer :: i_hole_act, j_hole_act, k_hole_act
integer :: i_particle_act, j_particle_act, k_particle_act
integer :: ispin,jspin,kspin
if (n_holes_act == 0 .and. n_particles_act == 1) then
ispin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
do i_state = 1, N_states
delta_e_act(i_state) += one_creat(i_particle_act,ispin,i_state)
enddo
else if (n_holes_act == 1 .and. n_particles_act == 0) then
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil(i_hole_act , ispin,i_state)
enddo
else if (n_holes_act == 1 .and. n_particles_act == 1) then
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
! first particle
jspin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil_one_creat(i_particle_act,i_hole_act,jspin,ispin,i_state)
enddo
else if (n_holes_act == 2 .and. n_particles_act == 0) then
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
jspin = hole_list_practical(1,2)
j_hole_act = hole_list_practical(2,2)
do i_state = 1, N_states
delta_e_act(i_state) += two_anhil(i_hole_act,j_hole_act,ispin,jspin,i_state)
enddo
else if (n_holes_act == 0 .and. n_particles_act == 2) then
ispin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
jspin = particle_list_practical(1,2)
j_particle_act = particle_list_practical(2,2)
do i_state = 1, N_states
delta_e_act(i_state) += two_creat(i_particle_act,j_particle_act,ispin,jspin,i_state)
enddo
else if (n_holes_act == 2 .and. n_particles_act == 1) then
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
! second hole
jspin = hole_list_practical(1,2)
j_hole_act = hole_list_practical(2,2)
! first particle
kspin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
do i_state = 1, N_states
delta_e_act(i_state) += two_anhil_one_creat(i_particle_act,i_hole_act,j_hole_act,kspin,ispin,jspin,i_state)
enddo
else if (n_holes_act == 1 .and. n_particles_act == 2) then
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
! first particle
jspin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
! second particle
kspin = particle_list_practical(1,2)
j_particle_act = particle_list_practical(2,2)
do i_state = 1, N_states
delta_e_act(i_state) += two_creat_one_anhil(i_particle_act,j_particle_act,i_hole_act,jspin,kspin,ispin,i_state)
enddo
else if (n_holes_act == 3 .and. n_particles_act == 0) then
! first hole
ispin = hole_list_practical(1,1)
i_hole_act = hole_list_practical(2,1)
! second hole
jspin = hole_list_practical(1,2)
j_hole_act = hole_list_practical(2,2)
! third hole
kspin = hole_list_practical(1,3)
k_hole_act = hole_list_practical(2,3)
do i_state = 1, N_states
delta_e_act(i_state) += three_anhil(i_hole_act,j_hole_act,k_hole_act,ispin,jspin,kspin,i_state)
enddo
else if (n_holes_act == 0 .and. n_particles_act == 3) then
! first particle
ispin = particle_list_practical(1,1)
i_particle_act = particle_list_practical(2,1)
! second particle
jspin = particle_list_practical(1,2)
j_particle_act = particle_list_practical(2,2)
! second particle
kspin = particle_list_practical(1,3)
k_particle_act = particle_list_practical(2,3)
do i_state = 1, N_states
delta_e_act(i_state) += three_creat(i_particle_act,j_particle_act,k_particle_act,ispin,jspin,kspin,i_state)
enddo
else if (n_holes_act .eq. 0 .and. n_particles_act .eq.0)then
integer :: degree
integer(bit_kind) :: det_1_active(N_int,2)
integer :: h1,h2,p1,p2,s1,s2
integer :: exc(0:2,2,2)
integer :: i_hole, i_part
double precision :: phase
call get_excitation_degree(det_1,det_2,degree,N_int)
if(degree == 1)then
call get_excitation(det_1,det_2,exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
i_hole = list_inact_reverse(h1)
i_part = list_virt_reverse(p1)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil_one_creat_inact_virt(i_hole,i_part,i_state)
enddo
endif
else if (n_holes_act .ge. 2 .and. n_particles_act .ge.2) then
delta_e_act = -10000000.d0
endif
!print*, 'one_anhil_spin_trace'
!print*, one_anhil_spin_trace(1), one_anhil_spin_trace(2)
do i_state = 1, n_states
delta_e_final(i_state) = delta_e_act(i_state) + delta_e_inactive(i_state) - delta_e_virt(i_state)
enddo
!write(*,'(100(f16.10,X))'), delta_e_final(1) , delta_e_act(1) , delta_e_inactive(1) , delta_e_virt(1)
end
subroutine get_delta_e_dyall_general_mp(det_1,det_2,delta_e_final)
BEGIN_DOC
! routine that returns the delta_e with the Moller Plesset and Dyall operators
!
! with det_1 being a determinant from the cas, and det_2 being a perturber
!
! Delta_e(det_1,det_2) = sum (hole) epsilon(hole) + sum(part) espilon(part) + delta_e(act)
!
! where hole is necessary in the inactive, part necessary in the virtuals
!
! and delta_e(act) is obtained as the sum of energies of excitations a la MP
!
END_DOC
implicit none
use bitmasks
double precision, intent(out) :: delta_e_final(N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer :: i,j,k,l
integer :: i_state
integer :: n_holes_spin(2)
integer :: n_holes
integer :: holes_list(N_int*bit_kind_size,2)
double precision :: delta_e_inactive(N_states)
integer :: i_hole_inact
call give_holes_in_inactive_space(det_2,n_holes_spin,n_holes,holes_list)
delta_e_inactive = 0.d0
do i = 1, n_holes_spin(1)
i_hole_inact = holes_list(i,1)
do i_state = 1, N_states
delta_e_inactive += fock_core_inactive_total_spin_trace(i_hole_inact,i_state)
enddo
enddo
do i = 1, n_holes_spin(2)
i_hole_inact = holes_list(i,2)
do i_state = 1, N_states
delta_e_inactive(i_state) += fock_core_inactive_total_spin_trace(i_hole_inact,i_state)
enddo
enddo
double precision :: delta_e_virt(N_states)
integer :: i_part_virt
integer :: n_particles_spin(2)
integer :: n_particles
integer :: particles_list(N_int*bit_kind_size,2)
call give_particles_in_virt_space(det_2,n_particles_spin,n_particles,particles_list)
delta_e_virt = 0.d0
do i = 1, n_particles_spin(1)
i_part_virt = particles_list(i,1)
do i_state = 1, N_states
delta_e_virt += fock_virt_total_spin_trace(i_part_virt,i_state)
enddo
enddo
do i = 1, n_particles_spin(2)
i_part_virt = particles_list(i,2)
do i_state = 1, N_states
delta_e_virt += fock_virt_total_spin_trace(i_part_virt,i_state)
enddo
enddo
integer :: n_holes_spin_act(2),n_particles_spin_act(2)
integer :: n_holes_act,n_particles_act
integer :: holes_active_list(2*n_act_orb,2)
integer :: holes_active_list_spin_traced(4*n_act_orb)
integer :: particles_active_list(2*n_act_orb,2)
integer :: particles_active_list_spin_traced(4*n_act_orb)
double precision :: delta_e_act(N_states)
delta_e_act = 0.d0
call give_holes_and_particles_in_active_space(det_1,det_2,n_holes_spin_act,n_particles_spin_act, &
n_holes_act,n_particles_act,holes_active_list,particles_active_list)
integer :: icount,icountbis
integer :: hole_list_practical(2,elec_num_tab(1)+elec_num_tab(2)), particle_list_practical(2,elec_num_tab(1)+elec_num_tab(2))
icount = 0
icountbis = 0
do i = 1, n_holes_spin_act(1)
icount += 1
icountbis += 1
hole_list_practical(1,icountbis) = 1 ! spin
hole_list_practical(2,icountbis) = holes_active_list(i,1) ! index of active orb
holes_active_list_spin_traced(icount) = holes_active_list(i,1)
enddo
do i = 1, n_holes_spin_act(2)
icount += 1
icountbis += 1
hole_list_practical(1,icountbis) = 2
hole_list_practical(2,icountbis) = holes_active_list(i,2)
holes_active_list_spin_traced(icount) = holes_active_list(i,2)
enddo
if(icount .ne. n_holes_act) then
print*,''
print*, icount, n_holes_act
print * , 'pb in holes_active_list_spin_traced !!'
stop
endif
icount = 0
icountbis = 0
do i = 1, n_particles_spin_act(1)
icount += 1
icountbis += 1
particle_list_practical(1,icountbis) = 1
particle_list_practical(2,icountbis) = particles_active_list(i,1)
particles_active_list_spin_traced(icount) = particles_active_list(i,1)
enddo
do i = 1, n_particles_spin_act(2)
icount += 1
icountbis += 1
particle_list_practical(1,icountbis) = 2
particle_list_practical(2,icountbis) = particles_active_list(i,2)
particles_active_list_spin_traced(icount) = particles_active_list(i,2)
enddo
if(icount .ne. n_particles_act) then
print*, icount, n_particles_act
print * , 'pb in particles_active_list_spin_traced !!'
stop
endif
integer :: i_hole_act, j_hole_act, k_hole_act
integer :: i_particle_act, j_particle_act, k_particle_act
integer :: ispin,jspin,kspin
do i = 1, n_holes_act
ispin = hole_list_practical(1,i)
i_hole_act = hole_list_practical(2,i)
do i_state = 1, N_states
delta_e_act(i_state) += one_anhil(i_hole_act , ispin,i_state)
enddo
enddo
do i = 1, n_particles_act
ispin = particle_list_practical(1,i)
i_particle_act = particle_list_practical(2,i)
do i_state = 1, N_states
delta_e_act(i_state) += one_creat(i_particle_act, ispin,i_state)
enddo
enddo
do i_state = 1, n_states
delta_e_final(i_state) = delta_e_act(i_state) + delta_e_inactive(i_state) - delta_e_virt(i_state)
enddo
end