10
0
mirror of https://github.com/LCPQ/quantum_package synced 2024-06-02 11:25:26 +02:00
quantum_package/src/Determinants/diagonalize_CI.irp.f
2016-11-02 16:01:01 +01:00

291 lines
9.5 KiB
Fortran

BEGIN_PROVIDER [ character*(64), diag_algorithm ]
implicit none
BEGIN_DOC
! Diagonalization algorithm (Davidson or Lapack)
END_DOC
if (N_det > N_det_max_jacobi) then
diag_algorithm = "Davidson"
else
diag_algorithm = "Lapack"
endif
if (N_det < N_states_diag) then
diag_algorithm = "Lapack"
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
implicit none
BEGIN_DOC
! N_states lowest eigenvalues of the CI matrix
END_DOC
integer :: j
character*(8) :: st
call write_time(output_determinants)
do j=1,N_states_diag
CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion
write(st,'(I4)') j
call write_double(output_determinants,CI_energy(j),'Energy of state '//trim(st))
call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st))
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_expectation_value, (N_states_diag) ]
implicit none
integer :: i
do i = 1, N_states
call u0_H_u_0(CI_expectation_value(i),psi_coef(1,i),n_det,psi_det,N_int)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ]
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ]
BEGIN_DOC
! Eigenvectors/values of the CI matrix
END_DOC
implicit none
double precision :: ovrlp,u_dot_v
integer :: i_good_state
integer, allocatable :: index_good_state_array(:)
logical, allocatable :: good_state_array(:)
double precision, allocatable :: s2_values_tmp(:)
integer :: i_other_state
double precision, allocatable :: eigenvectors(:,:), eigenvalues(:)
integer :: i_state
double precision :: s2,e_0
integer :: i,j,k
double precision, allocatable :: s2_eigvalues(:)
double precision, allocatable :: e_array(:)
integer, allocatable :: iorder(:)
! Guess values for the "N_states_diag" states of the CI_eigenvectors
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors(i,j) = psi_coef(i,j)
enddo
enddo
do j=N_det+1,N_states_diag
do i=1,N_det
CI_eigenvectors(i,j) = 0.d0
enddo
enddo
if (diag_algorithm == "Davidson") then
print*, '------------- In Davidson '
call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, &
size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants)
print*, '------------- Out Davidson '
do j=1,N_states_diag
print*, '------------- In S^2'
call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j))
print*, '------------- Out S^2'
enddo
else if (diag_algorithm == "Lapack") then
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
allocate (eigenvalues(N_det))
call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
CI_electronic_energy(:) = 0.d0
if (s2_eig) then
i_state = 0
allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
do j=1,N_det
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
s2_eigvalues(j) = s2
print*, 's2 in lapack',s2
print*, eigenvalues(j) + nuclear_repulsion
! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2-expected_s2).le.0.3d0)then
i_state +=1
index_good_state_array(i_state) = j
good_state_array(j) = .True.
endif
if(i_state.eq.N_states) then
exit
endif
enddo
if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j))
enddo
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo
i_other_state = 0
do j = 1, N_det
if(good_state_array(j))cycle
i_other_state +=1
if(i_state+i_other_state.gt.n_states_diag)then
exit
endif
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2)
do i=1,N_det
CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j)
enddo
CI_electronic_energy(i_state+i_other_state) = eigenvalues(j)
CI_eigenvectors_s2(i_state+i_other_state) = s2
enddo
deallocate(index_good_state_array,good_state_array)
else
print*,''
print*,'!!!!!!!! WARNING !!!!!!!!!'
print*,' Within the ',N_det,'determinants selected'
print*,' and the ',N_states_diag,'states requested'
print*,' We did not find any state with S^2 values close to ',expected_s2
print*,' We will then set the first N_states eigenvectors of the H matrix'
print*,' as the CI_eigenvectors'
print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space'
print*,''
do j=1,min(N_states_diag,N_det)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
CI_eigenvectors_s2(j) = s2_eigvalues(j)
enddo
endif
deallocate(s2_eigvalues)
else
! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag)
call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2)
do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j)
enddo
CI_electronic_energy(j) = eigenvalues(j)
CI_eigenvectors_s2(j) = s2
enddo
endif
deallocate(eigenvectors,eigenvalues)
endif
if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then
! Diagonalizing S^2 within the "n_states_diag" states found
allocate(s2_eigvalues(N_states_diag))
call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues)
do j = 1, N_states_diag
do i = 1, N_det
psi_coef(i,j) = CI_eigenvectors(i,j)
enddo
enddo
if(s2_eig)then
! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value
! closer to the "expected_s2" set as input
allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False.
i_state = 0
do j = 1, N_states_diag
if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then
good_state_array(j) = .True.
i_state +=1
index_good_state_array(i_state) = j
endif
enddo
! Sorting the i_state good states by energy
allocate(e_array(i_state),iorder(i_state))
do j = 1, i_state
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j))
enddo
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j))
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
CI_electronic_energy(j) = e_0
e_array(j) = e_0
iorder(j) = j
enddo
call dsort(e_array,iorder,i_state)
do j = 1, i_state
CI_electronic_energy(j) = e_array(j)
CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j)))
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j)))
enddo
! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
! print*,'e = ',CI_electronic_energy(j)
! print*,'<e> = ',e_0
! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2)
! print*,'s^2 = ',CI_eigenvectors_s2(j)
! print*,'<s^2>= ',s2
enddo
deallocate(e_array,iorder)
! Then setting the other states without any specific energy order
i_other_state = 0
do j = 1, N_states_diag
if(good_state_array(j))cycle
i_other_state +=1
do i = 1, N_det
CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j)
enddo
CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j)
call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int)
CI_electronic_energy(i_state + i_other_state) = e_0
enddo
deallocate(index_good_state_array,good_state_array)
else
!! Sorting the N_states_diag by energy, whatever the S^2 value is
allocate(e_array(n_states_diag),iorder(n_states_diag))
do j = 2, N_states_diag
if(store_full_H_mat.and.n_det.le.n_det_max_stored)then
call u_0_H_u_0_stored(e_0,CI_eigenvectors(1,j),H_matrix_all_dets,n_det)
else
call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int)
endif
e_array(j) = e_0
iorder(j) = j
enddo
call dsort(e_array,iorder,n_states_diag)
do j = 2, N_states_diag
CI_electronic_energy(j) = e_array(j)
do i = 1, N_det
CI_eigenvectors(i,j) = psi_coef(i,iorder(j))
enddo
CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j))
enddo
deallocate(e_array,iorder)
endif
deallocate(s2_eigvalues)
endif
print*, 'out provider'
END_PROVIDER
subroutine diagonalize_CI
implicit none
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
integer :: i,j
do j=1,N_states_diag
do i=1,N_det
psi_coef(i,j) = CI_eigenvectors(i,j)
enddo
enddo
SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors CI_eigenvectors_s2
end