mirror of
https://github.com/LCPQ/quantum_package
synced 2024-11-03 12:43:52 +01:00
284 lines
13 KiB
Fortran
284 lines
13 KiB
Fortran
|
|
subroutine give_2p_new(matrix_2p)
|
|
use bitmasks
|
|
implicit none
|
|
double precision , intent(inout) :: matrix_2p(N_det,N_det,*)
|
|
integer :: i,v,r,a,b,c
|
|
integer :: iorb, vorb, rorb, aorb, borb,corb
|
|
integer :: ispin,jspin
|
|
integer :: idet,jdet
|
|
integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,n_act_orb,2,2)
|
|
double precision :: perturb_dets_phase(n_act_orb,n_act_orb,2,2)
|
|
double precision :: perturb_dets_hij(n_act_orb,n_act_orb,2,2)
|
|
double precision :: perturb_dets_hpsi0(n_act_orb,n_act_orb,2,2,N_states)
|
|
integer :: inint
|
|
integer :: elec_num_tab_local(2),acu_elec
|
|
integer(bit_kind) :: det_tmp(N_int,2)
|
|
integer(bit_kind) :: det_tmp_j(N_int,2)
|
|
integer :: exc(0:2,2,2)
|
|
integer :: accu_elec
|
|
double precision :: get_mo_bielec_integral
|
|
double precision :: active_int(n_act_orb,n_act_orb,2)
|
|
double precision :: hij,phase
|
|
double precision :: accu_contrib(N_states)
|
|
integer :: degree(N_det)
|
|
integer :: idx(0:N_det)
|
|
double precision :: delta_e(n_act_orb,n_act_orb,2,2,N_states)
|
|
double precision :: delta_e_inv(n_act_orb,n_act_orb,2,2,N_states)
|
|
double precision :: delta_e_inactive_virt(N_states)
|
|
integer :: istate
|
|
integer :: index_orb_act_mono(N_det,6)
|
|
integer :: kspin
|
|
double precision :: delta_e_ja(N_states)
|
|
double precision :: hja
|
|
double precision :: contrib_hij
|
|
double precision :: fock_operator_local(n_act_orb,n_act_orb,2)
|
|
double precision :: hij_test
|
|
integer ::i_ok
|
|
integer(bit_kind) :: det_tmp_bis(N_int,2)
|
|
double precision :: hib , hab
|
|
double precision :: delta_e_ab(N_states)
|
|
double precision :: hib_test,hja_test,hab_test
|
|
integer :: i_hole,i_part
|
|
double precision :: hia,hjb
|
|
integer :: other_spin(2)
|
|
other_spin(1) = 2
|
|
other_spin(2) = 1
|
|
|
|
accu_contrib = 0.d0
|
|
!matrix_2p = 0.d0
|
|
|
|
elec_num_tab_local = 0
|
|
do inint = 1, N_int
|
|
elec_num_tab_local(1) += popcnt(psi_det(inint,1,1))
|
|
elec_num_tab_local(2) += popcnt(psi_det(inint,2,1))
|
|
enddo
|
|
do v = 1, n_virt_orb ! First virtual
|
|
vorb = list_virt(v)
|
|
do r = 1, n_virt_orb ! Second virtual
|
|
rorb = list_virt(r)
|
|
! take all the integral you will need for r,v fixed
|
|
do a = 1, n_act_orb
|
|
aorb = list_act(a)
|
|
do b = 1, n_act_orb
|
|
borb = list_act(b)
|
|
active_int(a,b,1) = get_mo_bielec_integral(aorb,borb,rorb,vorb,mo_integrals_map) ! direct ( a--> r | b--> v )
|
|
active_int(a,b,2) = get_mo_bielec_integral(aorb,borb,vorb,rorb,mo_integrals_map) ! exchange ( b--> r | a--> v )
|
|
perturb_dets_phase(a,b,1,1) = -1000.d0
|
|
perturb_dets_phase(a,b,1,2) = -1000.d0
|
|
perturb_dets_phase(a,b,2,2) = -1000.d0
|
|
perturb_dets_phase(a,b,2,1) = -1000.d0
|
|
perturb_dets_phase(b,a,1,1) = -1000.d0
|
|
perturb_dets_phase(b,a,1,2) = -1000.d0
|
|
perturb_dets_phase(b,a,2,2) = -1000.d0
|
|
perturb_dets_phase(b,a,2,1) = -1000.d0
|
|
enddo
|
|
enddo
|
|
|
|
|
|
do istate = 1, N_states
|
|
delta_e_inactive_virt(istate) = &
|
|
- fock_virt_total_spin_trace(rorb,istate) &
|
|
- fock_virt_total_spin_trace(vorb,istate)
|
|
enddo
|
|
do idet = 1, N_det
|
|
! call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
|
call get_excitation_degree_vector(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx)
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements
|
|
do ispin = 1, 2 ! spin of the couple a-a^dagger (aorb,rorb)
|
|
do jspin = 1, 2 ! spin of the couple a-a^dagger (borb,vorb)
|
|
do b = 1, n_act_orb ! First active
|
|
borb = list_act(b)
|
|
do a = 1, n_act_orb ! First active
|
|
aorb = list_act(a)
|
|
! if(ispin == 2.and. jspin ==1)then
|
|
! perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
|
|
! perturb_dets_hij(a,b,ispin,jspin) = 0.d0
|
|
! cycle ! condition not to double count
|
|
! endif
|
|
|
|
if(ispin == jspin .and. vorb.le.rorb)then
|
|
perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
|
|
perturb_dets_hij(a,b,ispin,jspin) = 0.d0
|
|
cycle ! condition not to double count
|
|
endif
|
|
if(ispin == jspin .and. aorb.le.borb) then
|
|
perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
|
|
perturb_dets_hij(a,b,ispin,jspin) = 0.d0
|
|
cycle ! condition not to double count
|
|
endif
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = psi_det(inint,1,idet)
|
|
det_tmp(inint,2) = psi_det(inint,2,idet)
|
|
enddo
|
|
! Do the excitation (aorb,ispin) --> (rorb,ispin)
|
|
call clear_bit_to_integer(aorb,det_tmp(1,ispin),N_int) ! hole in "aorb" of spin Ispin
|
|
call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin
|
|
|
|
! Do the excitation (borb,jspin) --> (vorb,jspin)
|
|
call clear_bit_to_integer(borb,det_tmp(1,jspin),N_int) ! hole in "borb" of spin Jspin
|
|
call set_bit_to_integer(vorb,det_tmp(1,jspin),N_int) ! particle in "vorb" of spin Jspin
|
|
|
|
! Check if the excitation is possible or not on psi_det(idet)
|
|
accu_elec= 0
|
|
do inint = 1, N_int
|
|
accu_elec+= popcnt(det_tmp(inint,1)) + popcnt(det_tmp(inint,2))
|
|
enddo
|
|
if(accu_elec .ne. elec_num_tab_local(2)+elec_num_tab_local(1))then
|
|
perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0
|
|
perturb_dets_hij(a,b,ispin,jspin) = 0.d0
|
|
cycle
|
|
endif
|
|
do inint = 1, N_int
|
|
perturb_dets(inint,1,a,b,ispin,jspin) = det_tmp(inint,1)
|
|
perturb_dets(inint,2,a,b,ispin,jspin) = det_tmp(inint,2)
|
|
enddo
|
|
|
|
call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int)
|
|
perturb_dets_phase(a,b,ispin,jspin) = phase
|
|
|
|
do istate = 1, N_states
|
|
delta_e(a,b,ispin,jspin,istate) = two_anhil(a,b,ispin,jspin,istate) + delta_e_inactive_virt(istate)
|
|
delta_e_inv(a,b,ispin,jspin,istate) = 1.d0 / delta_e(a,b,ispin,jspin,istate)
|
|
enddo
|
|
if(ispin == jspin)then
|
|
perturb_dets_hij(a,b,ispin,jspin) = phase * (active_int(a,b,2) - active_int(a,b,1) )
|
|
else
|
|
perturb_dets_hij(a,b,ispin,jspin) = phase * active_int(a,b,1)
|
|
endif
|
|
call i_H_j(psi_det(1,1,idet),det_tmp,N_int,hij)
|
|
if(hij.ne.perturb_dets_hij(a,b,ispin,jspin))then
|
|
print*, active_int(a,b,1) , active_int(b,a,1)
|
|
double precision :: hmono,hdouble
|
|
call i_H_j_verbose(psi_det(1,1,idet),det_tmp,N_int,hij,hmono,hdouble)
|
|
print*, 'pb !! hij.ne.perturb_dets_hij(a,b,ispin,jspin)'
|
|
print*, ispin,jspin
|
|
print*, aorb,rorb,borb,vorb
|
|
print*, hij,perturb_dets_hij(a,b,ispin,jspin)
|
|
call debug_det(psi_det(1,1,idet),N_int)
|
|
call debug_det(det_tmp,N_int)
|
|
stop
|
|
endif
|
|
enddo ! b
|
|
enddo ! a
|
|
enddo ! jspin
|
|
enddo ! ispin
|
|
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | a^{\dagger}_b a_{a} | Idet>
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!! <Jdet | K_{ab} | Idet>
|
|
do jdet = 1, idx(0)
|
|
if(degree(jdet)==1)then
|
|
call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
|
if (exc(0,1,1) == 1) then
|
|
! Mono alpha
|
|
i_hole = list_act_reverse(exc(1,1,1)) !!! a_a
|
|
i_part = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b}
|
|
kspin = 1 !!! kspin
|
|
index_orb_act_mono(idx(jdet),1) = i_hole
|
|
index_orb_act_mono(idx(jdet),2) = i_part
|
|
index_orb_act_mono(idx(jdet),3) = kspin
|
|
call i_H_j_dyall(psi_active(1,1,idet),psi_active(1,1,idx(jdet)),N_int,hij)
|
|
fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator
|
|
fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator
|
|
else
|
|
! Mono beta
|
|
i_hole = list_act_reverse(exc(1,1,2)) !!! a_a
|
|
i_part = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b}
|
|
kspin = 2 !!! kspin
|
|
index_orb_act_mono(idx(jdet),1) = i_hole
|
|
index_orb_act_mono(idx(jdet),2) = i_part
|
|
index_orb_act_mono(idx(jdet),3) = kspin
|
|
call i_H_j_dyall(psi_active(1,1,idet),psi_active(1,1,idx(jdet)),N_int,hij)
|
|
fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator
|
|
fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator
|
|
endif
|
|
else if(degree(jdet)==2)then
|
|
call get_double_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int)
|
|
if (exc(0,1,1) == 1) then
|
|
! Mono alpha
|
|
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a ALPHA
|
|
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} ALPHA
|
|
index_orb_act_mono(idx(jdet),3) = 1
|
|
! Mono beta
|
|
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,1,2)) !!! a_a BETA
|
|
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b} BETA
|
|
index_orb_act_mono(idx(jdet),6) = 2
|
|
else if (exc(0,1,1) == 2) then
|
|
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a ALPHA
|
|
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} ALPHA
|
|
index_orb_act_mono(idx(jdet),3) = 1
|
|
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(2,1,1)) !!! a_c ALPHA
|
|
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(2,2,1)) !!! a^{\dagger}_{d} ALPHA
|
|
index_orb_act_mono(idx(jdet),6) = 1
|
|
else if (exc(0,1,2) == 2) then
|
|
index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,2)) !!! a_a BETA
|
|
index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(2,1,2)) !!! a^{\dagger}_{b} BETA
|
|
index_orb_act_mono(idx(jdet),3) = 2
|
|
index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,2,2)) !!! a_c BETA
|
|
index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(2,2,2)) !!! a^{\dagger}_{d} BETA
|
|
index_orb_act_mono(idx(jdet),6) = 2
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
|
|
|
|
! do jdet = 1, idx(0)
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CASE OF THE MONO EXCITATIONS
|
|
! if(degree(jdet) == 1)then
|
|
! ! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator
|
|
! ! are connected by the presence of the perturbers determinants |det_tmp>
|
|
! aorb = index_orb_act_mono(idx(jdet),1) ! a_{aorb}
|
|
! borb = index_orb_act_mono(idx(jdet),2) ! a^{\dagger}_{borb}
|
|
! kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation
|
|
! ! the determinants Idet and Jdet interact throw the following operator
|
|
! ! | Jdet > = a^{\dagger}_{borb,kspin} a_{aorb, kspin} | Idet >
|
|
|
|
! accu_contrib = 0.d0
|
|
do ispin = 1, 2 ! you loop on all possible spin for the excitation
|
|
! a^{\dagger}_r a_{a} (ispin)
|
|
!!!! SECOND ORDER CONTRIBTIONS
|
|
! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,jspin} a_{corb,jspin} a_{iorb,ispin} | Idet >
|
|
do jspin = 1, 2
|
|
if(ispin == 2 .and. jspin ==1)cycle
|
|
do b = 1, n_act_orb
|
|
do a = 1, n_act_orb
|
|
logical :: cycle_same_spin_second_order(2)
|
|
cycle_same_spin_second_order(1) = .False.
|
|
cycle_same_spin_second_order(2) = .False.
|
|
if(perturb_dets_phase(a,b,ispin,jspin).le.-10d0)cycle
|
|
if(ispin == jspin .and. vorb.le.rorb)then
|
|
cycle_same_spin_second_order(1) = .True.
|
|
endif
|
|
if(ispin == jspin .and. aorb.le.borb)then
|
|
cycle_same_spin_second_order(2) = .True.
|
|
endif
|
|
do inint = 1, N_int
|
|
det_tmp(inint,1) = perturb_dets(inint,1,a,b,ispin,jspin)
|
|
det_tmp(inint,2) = perturb_dets(inint,2,a,b,ispin,jspin)
|
|
enddo
|
|
do jdet = 1, idx(0)
|
|
! if(idx(jdet).gt.idet)cycle
|
|
do istate = 1, N_states
|
|
call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij)
|
|
matrix_2p(idx(jdet),idet,istate) += hij * perturb_dets_hij(a,b,ispin,jspin) * delta_e_inv(a,b,ispin,jspin,istate)
|
|
enddo
|
|
enddo ! jdet
|
|
enddo ! b
|
|
enddo ! a
|
|
enddo ! jspin
|
|
enddo ! ispin
|
|
|
|
! else if (degree(jdet) == 0)then
|
|
!
|
|
! endif
|
|
! enddo !! jdet
|
|
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
end
|