BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ] implicit none BEGIN_DOC ! N_states lowest eigenvalues of the CI matrix END_DOC integer :: j character*(8) :: st call write_time(6) do j=1,min(N_det,N_states_diag) CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion enddo do j=1,min(N_det,N_states) write(st,'(I4)') j call write_double(6,CI_energy_dressed(j),'Energy of state '//trim(st)) call write_double(6,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st)) enddo END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ] BEGIN_DOC ! Eigenvectors/values of the CI matrix END_DOC implicit none double precision :: ovrlp,u_dot_v integer :: i_good_state integer, allocatable :: index_good_state_array(:) logical, allocatable :: good_state_array(:) double precision, allocatable :: s2_values_tmp(:) integer :: i_other_state double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:) integer :: i_state double precision :: e_0 integer :: i,j,k,mrcc_state double precision, allocatable :: s2_eigvalues(:) double precision, allocatable :: e_array(:) integer, allocatable :: iorder(:) PROVIDE threshold_davidson nthreads_davidson ! Guess values for the "N_states" states of the CI_eigenvectors_dressed do j=1,min(N_states,N_det) do i=1,N_det CI_eigenvectors_dressed(i,j) = psi_coef(i,j) enddo enddo do j=min(N_states,N_det)+1,N_states_diag do i=1,N_det CI_eigenvectors_dressed(i,j) = 0.d0 enddo enddo if (diag_algorithm == "Davidson") then do j=1,min(N_states,N_det) do i=1,N_det CI_eigenvectors_dressed(i,j) = psi_coef(i,j) enddo enddo call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,& size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,& N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1) else if (diag_algorithm == "Lapack") then allocate (eigenvectors(size(H_matrix_dressed,1),N_det)) allocate (eigenvalues(N_det)) call lapack_diag(eigenvalues,eigenvectors, & H_matrix_dressed,size(H_matrix_dressed,1),N_det) CI_electronic_energy_dressed(:) = 0.d0 if (s2_eig) then i_state = 0 allocate (s2_eigvalues(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det)) good_state_array = .False. call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& N_det,size(eigenvectors,1)) do j=1,N_det ! Select at least n_states states with S^2 values closed to "expected_s2" if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then i_state +=1 index_good_state_array(i_state) = j good_state_array(j) = .True. endif if(i_state.eq.N_states) then exit endif enddo if(i_state .ne.0)then ! Fill the first "i_state" states that have a correct S^2 value do j = 1, i_state do i=1,N_det CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j)) enddo CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j)) CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j)) enddo i_other_state = 0 do j = 1, N_det if(good_state_array(j))cycle i_other_state +=1 if(i_state+i_other_state.gt.n_states_diag)then exit endif do i=1,N_det CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j) CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state) enddo else print*,'' print*,'!!!!!!!! WARNING !!!!!!!!!' print*,' Within the ',N_det,'determinants selected' print*,' and the ',N_states_diag,'states requested' print*,' We did not find any state with S^2 values close to ',expected_s2 print*,' We will then set the first N_states eigenvectors of the H matrix' print*,' as the CI_eigenvectors_dressed' print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' print*,'' do j=1,min(N_states_diag,N_det) do i=1,N_det CI_eigenvectors_dressed(i,j) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(j) = eigenvalues(j) CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j) enddo endif deallocate(index_good_state_array,good_state_array) deallocate(s2_eigvalues) else call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,& min(N_det,N_states_diag),size(eigenvectors,1)) ! Select the "N_states_diag" states of lowest energy do j=1,min(N_det,N_states_diag) do i=1,N_det CI_eigenvectors_dressed(i,j) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(j) = eigenvalues(j) enddo endif deallocate(eigenvectors,eigenvalues) endif END_PROVIDER subroutine diagonalize_CI_dressed implicit none BEGIN_DOC ! Replace the coefficients of the CI states by the coefficients of the ! eigenstates of the CI matrix END_DOC integer :: i,j PROVIDE delta_ij do j=1,N_states do i=1,N_det psi_coef(i,j) = CI_eigenvectors_dressed(i,j) enddo enddo SOFT_TOUCH psi_coef end BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det) ] implicit none BEGIN_DOC ! Dressed H with Delta_ij END_DOC integer :: i, j, k h_matrix_dressed(1:N_det,1:N_det) = h_matrix_all_dets(1:N_det,1:N_det) do k=1,N_states do j=1,N_det do i=1,N_det h_matrix_dressed(i,j) = h_matrix_dressed(i,j) + & 0.5d0 * (dressing_column_h(i,k) * psi_coef(j,k) + & dressing_column_h(j,k) * psi_coef(i,k)) enddo enddo enddo END_PROVIDER