BEGIN_PROVIDER [ double precision, aux_pseudo_integral, (aux_basis_num_sqrt,aux_basis_num_sqrt)] implicit none BEGIN_DOC ! Pseudo-potential END_DOC if (do_pseudo) then ! aux_pseudo_integral = aux_pseudo_integral_local + aux_pseudo_integral_non_local ! aux_pseudo_integral = aux_pseudo_integral_local aux_pseudo_integral = aux_pseudo_integral_non_local else aux_pseudo_integral = 0.d0 endif END_PROVIDER BEGIN_PROVIDER [ double precision, aux_pseudo_integral_local, (aux_basis_num_sqrt,aux_basis_num_sqrt)] implicit none BEGIN_DOC ! Local pseudo-potential END_DOC double precision :: alpha, beta, gama, delta integer :: num_A,num_B double precision :: A_center(3),B_center(3),C_center(3) integer :: power_A(3),power_B(3) integer :: i,j,k,l,n_pt_in,m double precision :: Vloc, Vpseudo double precision :: cpu_1, cpu_2, wall_1, wall_2, wall_0 integer :: thread_num aux_pseudo_integral_local = 0.d0 !! Dump array integer, allocatable :: n_k_dump(:) double precision, allocatable :: v_k_dump(:), dz_k_dump(:) allocate(n_k_dump(1:pseudo_klocmax), v_k_dump(1:pseudo_klocmax), dz_k_dump(1:pseudo_klocmax)) ! _ ! / _. | _ | ! \_ (_| | (_ |_| | ! print*, 'Providing the nuclear electron pseudo integrals ' call wall_time(wall_1) call cpu_time(cpu_1) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B, & !$OMP num_A,num_B,Z,c,n_pt_in, & !$OMP v_k_dump,n_k_dump, dz_k_dump, & !$OMP wall_0,wall_2,thread_num) & !$OMP SHARED (aux_basis_num_sqrt,aux_basis_prim_num,aux_basis_expo_transp,aux_basis_power,aux_basis_nucl,nucl_coord,aux_basis_coef_transp, & !$OMP aux_pseudo_integral_local,nucl_num,nucl_charge, & !$OMP pseudo_klocmax,pseudo_lmax,pseudo_kmax,pseudo_v_k,pseudo_n_k, pseudo_dz_k, & !$OMP wall_1) !$OMP DO SCHEDULE (guided) do j = 1, aux_basis_num_sqrt num_A = aux_basis_nucl(j) power_A(1:3)= aux_basis_power(j,1:3) A_center(1:3) = nucl_coord(num_A,1:3) do i = 1, aux_basis_num_sqrt num_B = aux_basis_nucl(i) power_B(1:3)= aux_basis_power(i,1:3) B_center(1:3) = nucl_coord(num_B,1:3) do l=1,aux_basis_prim_num(j) alpha = aux_basis_expo_transp(l,j) do m=1,aux_basis_prim_num(i) beta = aux_basis_expo_transp(m,i) double precision :: c c = 0.d0 do k = 1, nucl_num double precision :: Z Z = nucl_charge(k) C_center(1:3) = nucl_coord(k,1:3) v_k_dump = pseudo_v_k(k,1:pseudo_klocmax) n_k_dump = pseudo_n_k(k,1:pseudo_klocmax) dz_k_dump = pseudo_dz_k(k,1:pseudo_klocmax) c = c + Vloc(pseudo_klocmax, v_k_dump,n_k_dump, dz_k_dump, & A_center,power_A,alpha,B_center,power_B,beta,C_center) enddo aux_pseudo_integral_local(i,j) = aux_pseudo_integral_local(i,j) + & aux_basis_coef_transp(l,j)*aux_basis_coef_transp(m,i)*c enddo enddo enddo call wall_time(wall_2) if (thread_num == 0) then if (wall_2 - wall_0 > 1.d0) then wall_0 = wall_2 print*, 100.*float(j)/float(aux_basis_num_sqrt), '% in ', & wall_2-wall_1, 's' endif endif enddo !$OMP END DO !$OMP END PARALLEL deallocate(n_k_dump,v_k_dump, dz_k_dump) END_PROVIDER BEGIN_PROVIDER [ double precision, aux_pseudo_integral_non_local, (aux_basis_num_sqrt,aux_basis_num_sqrt)] implicit none BEGIN_DOC ! Local pseudo-potential END_DOC double precision :: alpha, beta, gama, delta integer :: num_A,num_B double precision :: A_center(3),B_center(3),C_center(3) integer :: power_A(3),power_B(3) integer :: i,j,k,l,n_pt_in,m double precision :: Vloc, Vpseudo double precision :: cpu_1, cpu_2, wall_1, wall_2, wall_0 integer :: thread_num aux_pseudo_integral_non_local = 0.d0 !! Dump array integer, allocatable :: n_kl_dump(:,:) double precision, allocatable :: v_kl_dump(:,:), dz_kl_dump(:,:) allocate(n_kl_dump(pseudo_kmax,0:pseudo_lmax), v_kl_dump(pseudo_kmax,0:pseudo_lmax), dz_kl_dump(pseudo_kmax,0:pseudo_lmax)) ! _ ! / _. | _ | ! \_ (_| | (_ |_| | ! print*, 'Providing the nuclear electron pseudo integrals ' call wall_time(wall_1) call cpu_time(cpu_1) !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B, & !$OMP num_A,num_B,Z,c,n_pt_in, & !$OMP n_kl_dump, v_kl_dump, dz_kl_dump, & !$OMP wall_0,wall_2,thread_num) & !$OMP SHARED (aux_basis_num_sqrt,aux_basis_prim_num,aux_basis_expo_transp,aux_basis_power,aux_basis_nucl,nucl_coord,aux_basis_coef_transp, & !$OMP aux_pseudo_integral_non_local,nucl_num,nucl_charge, & !$OMP pseudo_klocmax,pseudo_lmax,pseudo_kmax,pseudo_n_kl, pseudo_v_kl, pseudo_dz_kl, & !$OMP wall_1) !$OMP DO SCHEDULE (guided) do j = 1, aux_basis_num_sqrt num_A = aux_basis_nucl(j) power_A(1:3)= aux_basis_power(j,1:3) A_center(1:3) = nucl_coord(num_A,1:3) do i = 1, aux_basis_num_sqrt num_B = aux_basis_nucl(i) power_B(1:3)= aux_basis_power(i,1:3) B_center(1:3) = nucl_coord(num_B,1:3) do l=1,aux_basis_prim_num(j) alpha = aux_basis_expo_transp(l,j) do m=1,aux_basis_prim_num(i) beta = aux_basis_expo_transp(m,i) double precision :: c c = 0.d0 do k = 1, nucl_num double precision :: Z Z = nucl_charge(k) C_center(1:3) = nucl_coord(k,1:3) n_kl_dump = pseudo_n_kl(k,1:pseudo_kmax,0:pseudo_lmax) v_kl_dump = pseudo_v_kl(k,1:pseudo_kmax,0:pseudo_lmax) dz_kl_dump = pseudo_dz_kl(k,1:pseudo_kmax,0:pseudo_lmax) c = c + Vpseudo(pseudo_lmax,pseudo_kmax,v_kl_dump,n_kl_dump,dz_kl_dump,A_center,power_A,alpha,B_center,power_B,beta,C_center) enddo aux_pseudo_integral_non_local(i,j) = aux_pseudo_integral_non_local(i,j) + & aux_basis_coef_transp(l,j)*aux_basis_coef_transp(m,i)*c enddo enddo enddo call wall_time(wall_2) if (thread_num == 0) then if (wall_2 - wall_0 > 1.d0) then wall_0 = wall_2 print*, 100.*float(j)/float(aux_basis_num_sqrt), '% in ', & wall_2-wall_1, 's' endif endif enddo !$OMP END DO !$OMP END PARALLEL deallocate(n_kl_dump,v_kl_dump, dz_kl_dump) END_PROVIDER BEGIN_PROVIDER [ double precision, ao_pseudo_grid, (ao_num,-pseudo_lmax:pseudo_lmax,0:pseudo_lmax,nucl_num,pseudo_grid_size) ] implicit none BEGIN_DOC ! Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \chi_i^{A} (r-r_A) d\Omega_C ! ! END_DOC ! l,m : Y(l,m) parameters ! c(3) : pseudopotential center ! a(3) : Atomic Orbital center ! n_a(3) : Powers of x,y,z in the Atomic Orbital ! g_a : Atomic Orbital exponent ! r : Distance between the Atomic Orbital center and the considered point double precision, external :: ylm_orb integer :: n_a(3) double precision :: a(3), c(3), g_a integer :: i,j,k,l,m,n,p double precision :: r(pseudo_grid_size), dr, Ulc double precision :: y dr = pseudo_grid_rmax/dble(pseudo_grid_size) r(1) = 0.d0 do j=2,pseudo_grid_size r(j) = r(j-1) + dr enddo ao_pseudo_grid = 0.d0 do j=1,pseudo_grid_size do k=1,nucl_num c(1:3) = nucl_coord(k,1:3) do l=0,pseudo_lmax do i=1,ao_num a(1:3) = nucl_coord(ao_nucl(i),1:3) n_a(1:3) = ao_power(i,1:3) do p=1,ao_prim_num(i) g_a = ao_expo_ordered_transp(p,i) do m=-l,l y = ylm_orb(l,m,c,a,n_a,g_a,r(j)) ao_pseudo_grid(i,m,l,k,j) = ao_pseudo_grid(i,m,l,k,j) + & ao_coef_normalized_ordered_transp(p,i)*y enddo enddo enddo enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, mo_pseudo_grid, (ao_num,-pseudo_lmax:pseudo_lmax,0:pseudo_lmax,nucl_num,pseudo_grid_size) ] implicit none BEGIN_DOC ! Grid points for f(|r-r_A|) = \int Y_{lm}^{C} (|r-r_C|, \Omega_C) \phi_i^{A} (r-r_A) d\Omega_C ! ! END_DOC ! l,m : Y(l,m) parameters ! c(3) : pseudopotential center ! a(3) : Atomic Orbital center ! n_a(3) : Powers of x,y,z in the Atomic Orbital ! g_a : Atomic Orbital exponent ! r : Distance between the Atomic Orbital center and the considered point double precision, external :: ylm_orb integer :: n_a(3) double precision :: a(3), c(3), g_a integer :: i,j,k,l,m,n,p double precision :: r(pseudo_grid_size), dr, Ulc double precision :: y dr = pseudo_grid_rmax/dble(pseudo_grid_size) r(1) = 0.d0 do j=2,pseudo_grid_size r(j) = r(j-1) + dr enddo mo_pseudo_grid = 0.d0 do n=1,pseudo_grid_size do k=1,nucl_num do l=0,pseudo_lmax do m=-l,l do j=1,mo_tot_num do i=1,ao_num mo_pseudo_grid(j,m,l,k,n) = mo_pseudo_grid(j,m,l,k,n) + & ao_pseudo_grid(i,m,l,k,n) * mo_coef(i,j) enddo enddo enddo enddo enddo enddo END_PROVIDER double precision function test_pseudo_grid_ao(i,j) implicit none integer, intent(in) :: i,j integer :: k,l,m,n double precision :: r, dr,u dr = pseudo_grid_rmax/dble(pseudo_grid_size) test_pseudo_grid_ao = 0.d0 r = 0.d0 do k=1,pseudo_grid_size do n=1,nucl_num do l = 0,pseudo_lmax u = pseudo_v_kl(n,l,1) * exp(-pseudo_dz_kl(n,l,1)*r*r)* r*r*dr do m=-l,l test_pseudo_grid_ao += ao_pseudo_grid(i,m,l,n,k) * ao_pseudo_grid(j,m,l,n,k) * u enddo enddo enddo r = r+dr enddo end