use bitmasks BEGIN_PROVIDER [integer, mo_inp_num] implicit none BEGIN_DOC ! This is the number of orbitals involved in the entanglement calculation. ! It is taken equal to the number of active orbitals n_act_orb. END_DOC mo_inp_num = n_act_orb END_PROVIDER BEGIN_PROVIDER [integer, mo_inp_list, (N_int*bit_kind_size)] &BEGIN_PROVIDER [integer, mo_inp_list_rev, (mo_tot_num)] &BEGIN_PROVIDER [integer(bit_kind), mo_inp_bit_list, (N_int)] implicit none BEGIN_DOC ! mo_inp_list is the list of the orbitals involved in the entanglement calculation. ! It is taken equal to the list of active orbitals list_act. ! mo_inp_list_rev is a list such that mo_inp_list_rev(mo_inp_list(i))=i. END_DOC integer :: i do i = 1, mo_inp_num mo_inp_list(i)=list_act(i) enddo do i = 1, mo_inp_num mo_inp_list_rev(mo_inp_list(i))=i enddo call list_to_bitstring( mo_inp_bit_list, mo_inp_list, mo_inp_num, N_int) END_PROVIDER BEGIN_PROVIDER [double precision, entropy_one_orb, (mo_inp_num)] &BEGIN_PROVIDER [double precision, entropy_two_orb, (mo_inp_num,mo_inp_num)] implicit none BEGIN_DOC ! entropy_one_orb is the one-orbital von Neumann entropy S(1)_i ! entropy_two_orb is the two-orbital von Neumann entropy S(2)_ij. END_DOC double precision, allocatable :: ro1(:,:),ro2(:,:,:) integer :: i,j,k,l,ii,jj,iii,istate,kl,info integer, allocatable :: occ(:,:) integer :: n_occ_alpha, n_occ_beta logical, allocatable :: zocc(:,:) logical :: zalpha, zbeta, zalpha2, zbeta2 integer :: exc(0:2,2,2),degree,h1,p1,h2,p2,spin1,spin2 double precision :: phase integer(bit_kind) :: key_tmp(N_int), key_tmp2(N_int) integer :: ip double precision, parameter :: eps=10.d0**(-14) double precision :: w(16), work(3*16) allocate(ro1(4,mo_inp_num),ro2(16,16,(mo_inp_num*(mo_inp_num-1)/2))) entropy_one_orb = 0.d0 entropy_two_orb = 0.d0 ro1 = 0.d0 ro2 = 0.d0 allocate (occ(N_int*bit_kind_size,2)) allocate (zocc(mo_tot_num,2)) istate = 1 !Only GS, to be generalized... do ii=1,N_det ! We get the occupation of the alpha electrons in occ(:,1) call bitstring_to_list(psi_det(1,1,ii), occ(1,1), n_occ_alpha, N_int) ! We get the occupation of the beta electrons in occ(:,2) call bitstring_to_list(psi_det(1,2,ii), occ(1,2), n_occ_beta, N_int) zocc = .false. do i=1,n_occ_alpha zocc(occ(i,1),1)=.true. enddo do i=1,n_occ_beta zocc(occ(i,2),2)=.true. enddo do k=1,mo_inp_num zalpha = zocc(mo_inp_list(k),1) zbeta = zocc(mo_inp_list(k),2) ! mono start if (zbeta.and.zalpha) then ro1(4,k) = ro1(4,k) + psi_coef(ii,istate)**2 ! double occupied elseif (zalpha) then ro1(2,k) = ro1(2,k) + psi_coef(ii,istate)**2 ! single alpha elseif (zbeta) then ro1(3,k) = ro1(3,k) + psi_coef(ii,istate)**2 ! single beta else ro1(1,k) = ro1(1,k) + psi_coef(ii,istate)**2 ! empty endif ! mono stop ! double start if (k.eq.mo_inp_num) cycle do l=k+1,mo_inp_num kl=(l-1)*(l-2)/2+k zalpha2 = zocc(mo_inp_list(l),1) zbeta2 = zocc(mo_inp_list(l),2) if (zbeta.and.zalpha.and.zbeta2.and.zalpha2) then ro2(16,16,kl) = ro2(16,16,kl) + psi_coef(ii,istate)**2 ! both double occupied else if (zbeta.and.zalpha.and.zbeta2) then ro2(15,15,kl) = ro2(15,15,kl) + psi_coef(ii,istate)**2 ! one double, one beta else if (zbeta.and.zalpha.and.zalpha2) then ro2(13,13,kl) = ro2(13,13,kl) + psi_coef(ii,istate)**2 ! one double, one alpha else if (zbeta.and.zbeta2.and.zalpha2) then ro2(14,14,kl) = ro2(14,14,kl) + psi_coef(ii,istate)**2 ! one beta, one double else if (zalpha.and.zbeta2.and.zalpha2) then ro2(12,12,kl) = ro2(12,12,kl) + psi_coef(ii,istate)**2 ! one alpha, one double else if (zalpha.and.zbeta) then ro2(11,11,kl) = ro2(11,11,kl) + psi_coef(ii,istate)**2 ! one double, one empty else if (zbeta2.and.zalpha2) then ro2(8,8,kl) = ro2(8,8,kl) + psi_coef(ii,istate)**2 ! one empty, one double else if (zbeta.and.zalpha2) then ro2(10,10,kl) = ro2(10,10,kl) + psi_coef(ii,istate)**2 ! one beta, one alpha else if (zalpha.and.zbeta2) then ro2(9,9,kl) = ro2(9,9,kl) + psi_coef(ii,istate)**2 ! one alpha, one beta else if (zbeta.and.zbeta2) then ro2(7,7,kl) = ro2(7,7,kl) + psi_coef(ii,istate)**2 ! one beta, one beta else if (zalpha.and.zalpha2) then ro2(6,6,kl) = ro2(6,6,kl) + psi_coef(ii,istate)**2 ! one alpha, one alpha else if (zbeta) then ro2(5,5,kl) = ro2(5,5,kl) + psi_coef(ii,istate)**2 ! one beta, one empty else if (zbeta2) then ro2(4,4,kl) = ro2(4,4,kl) + psi_coef(ii,istate)**2 ! one empty, one beta else if (zalpha) then ro2(3,3,kl) = ro2(3,3,kl) + psi_coef(ii,istate)**2 ! one alpha, one empty else if (zalpha2) then ro2(2,2,kl) = ro2(2,2,kl) + psi_coef(ii,istate)**2 ! one empty, one alpha else ro2(1,1,kl) = ro2(1,1,kl) + psi_coef(ii,istate)**2 ! both empty end if enddo enddo ! stop double if (ii.eq.N_det) cycle !Off Diagonal Elements do jj=ii+1,N_det call get_excitation_degree(psi_det(1,1,ii),psi_det(1,1,jj),degree,N_int) if (degree.gt.2) cycle ip=0 do iii =1,N_int key_tmp(iii) = ior(xor(psi_det(iii,1,ii),psi_det(iii,1,jj)),xor(psi_det(iii,2,ii),psi_det(iii,2,jj))) ip += popcnt(key_tmp(iii)) enddo if (ip.ne.2) cycle !They involve more than 2 orbitals. ip=0 do iii=1,N_int ip += popcnt(iand(key_tmp(iii),mo_inp_bit_list(iii))) enddo if (ip.ne.2) cycle !They do not involve orbitals of the list. if (degree.eq.2) then call get_double_excitation(psi_det(1,1,ii),psi_det(1,1,jj),exc,phase,N_int) call decode_exc(exc,degree,h1,p1,h2,p2,spin1,spin2) k=mo_inp_list_rev(h1) l=mo_inp_list_rev(p1) if (k.gt.l) then kl=(k-1)*(k-2)/2+l else kl=(l-1)*(l-2)/2+k endif if ((.not.zocc(mo_inp_list(l),1)).and.(.not.zocc(mo_inp_list(l),2))& .and.(zocc(mo_inp_list(k),1)).and.(zocc(mo_inp_list(k),2))) then ro2(8,11,kl) += phase*psi_coef(ii,istate)*psi_coef(jj,istate) ro2(11,8,kl) = ro2(8,11,kl) endif if ((zocc(mo_inp_list(l),1)).and.(.not.zocc(mo_inp_list(l),2))& .and.(.not.zocc(mo_inp_list(k),1)).and.(zocc(mo_inp_list(k),2))) then ro2(9,10,kl) -= phase*psi_coef(ii,istate)*psi_coef(jj,istate) !negative ro2(10,9,kl) = ro2(9,10,kl) endif if ((zocc(mo_inp_list(k),1)).and.(.not.zocc(mo_inp_list(k),2))& .and.(.not.zocc(mo_inp_list(l),1)).and.(zocc(mo_inp_list(l),2))) then ro2(9,10,kl) -= phase*psi_coef(ii,istate)*psi_coef(jj,istate) !negative ro2(10,9,kl) = ro2(9,10,kl) endif endif if (degree.eq.1) then call get_mono_excitation(psi_det(1,1,ii),psi_det(1,1,jj),exc,phase,N_int) call decode_exc(exc,degree,h1,p1,h2,p2,spin1,spin2) k=mo_inp_list_rev(h1) l=mo_inp_list_rev(p1) if (k.gt.l) then kl=(k-1)*(k-2)/2+l else kl=(l-1)*(l-2)/2+k endif if ((.not.(zocc(mo_inp_list(l),2))).and.& (.not.(zocc(mo_inp_list(l),1))).and.(zocc(mo_inp_list(k),1))& .and.(.not.(zocc(mo_inp_list(k),2)))) then ro2(2,3,kl) += phase*psi_coef(ii,istate)*psi_coef(jj,istate) ro2(3,2,kl)=ro2(2,3,kl) endif if ((.not.(zocc(mo_inp_list(l),2))).and.& (.not.(zocc(mo_inp_list(l),1))).and.(zocc(mo_inp_list(k),2))& .and.(.not.(zocc(mo_inp_list(k),1)))) then ro2(4,5,kl) += phase*psi_coef(ii,istate)*psi_coef(jj,istate) ro2(5,4,kl)=ro2(4,5,kl) endif if ((.not.(zocc(mo_inp_list(l),1))).and.& !k doubly occupied, l empty (.not.(zocc(mo_inp_list(l),2))).and.& (zocc(mo_inp_list(k),1)).and.& (zocc(mo_inp_list(k),2))) then if (k.gt.l) then if (spin1.eq.1) then !spin alpha ro2(8,9,kl) += phase*psi_coef(ii,istate)*psi_coef(jj,istate) ro2(9,8,kl)=ro2(8,9,kl) else !spin beta ro2(8,10,kl) -= phase*psi_coef(ii,istate)*psi_coef(jj,istate) !negative ro2(10,8,kl)=ro2(8,10,kl) endif else ! k.lt.l if (spin1.eq.1) then !spin alpha ro2(10,11,kl) -= phase*psi_coef(ii,istate)*psi_coef(jj,istate) !negative ro2(11,10,kl)=ro2(10,11,kl) else !spin beta ro2(9,11,kl) += phase*psi_coef(ii,istate)*psi_coef(jj,istate) ro2(11,9,kl)=ro2(9,11,kl) endif endif endif if ((.not.(zocc(mo_inp_list(l),1))).and.& !k alpha, l beta (.not.(zocc(mo_inp_list(k),2))).and.& (zocc(mo_inp_list(k),1)).and.& (zocc(mo_inp_list(l),2))) then if (k.gt.l) then if (spin1.eq.1) then !spin alpha ro2(10,11,kl) -= phase*psi_coef(ii,istate)*psi_coef(jj,istate) !negative ro2(11,10,kl)=ro2(10,11,kl) else !spin beta print*, "problem in k alpha l beta k.gt.l spin beta" endif else ! k.lt.l if (spin1.eq.1) then !spin alpha ro2(8,9,kl) += phase*psi_coef(ii,istate)*psi_coef(jj,istate) ro2(9,8,kl)=ro2(8,9,kl) else !spin beta print*, "problem in k alpha l beta k.lt.l spin beta" endif endif endif if ((.not.(zocc(mo_inp_list(k),1))).and.& !k beta, l alpha (.not.(zocc(mo_inp_list(l),2))).and.& (zocc(mo_inp_list(l),1)).and.& (zocc(mo_inp_list(k),2))) then if (k.gt.l) then if (spin1.eq.2) then !spin beta ro2(9,11,kl) += phase*psi_coef(ii,istate)*psi_coef(jj,istate) ro2(11,9,kl)=ro2(9,11,kl) else !spin alpha print*, "problem in k beta l alpha k.gt.l spin alpha" endif else ! k.lt.l if (spin1.eq.2) then !spin beta ro2(8,10,kl) -= phase*psi_coef(ii,istate)*psi_coef(jj,istate) !negative ro2(10,8,kl)=ro2(8,10,kl) else !spin alpha print*, "problem in k beta l alpha k.lt.l spin alpha" endif endif endif if (zocc(mo_inp_list(l),1).and.(.not.zocc(mo_inp_list(l),2))& .and.(zocc(mo_inp_list(k),1)).and.(zocc(mo_inp_list(k),2))) then ro2(12,13,kl) -= phase*psi_coef(ii,istate)*psi_coef(jj,istate) ro2(13,12,kl) = ro2(12,13,kl) endif if (zocc(mo_inp_list(l),2).and.(.not.zocc(mo_inp_list(l),1))& .and.(zocc(mo_inp_list(k),1)).and.(zocc(mo_inp_list(k),2))) then ro2(14,15,kl) -= phase*psi_coef(ii,istate)*psi_coef(jj,istate) ro2(15,14,kl) = ro2(14,15,kl) endif endif enddo enddo entropy_one_orb=0.d0 do k=1,mo_inp_num do i=1,4 if (ro1(i,k).ge.eps) then entropy_one_orb(k) = entropy_one_orb(k)-ro1(i,k)*log(ro1(i,k)) endif enddo enddo entropy_two_orb=0.d0 do k=1,mo_inp_num do l=1,k if (k.eq.l) cycle kl=(k-1)*(k-2)/2+l call dsyev('N','U',16,ro2(1,1,kl),16,w,work,3*16,info) if (info.ne.0) then write(*,*) "Errore in dsyev" endif do j=1,16 if (w(j).ge.eps) then entropy_two_orb(k,l) = entropy_two_orb(k,l)-w(j)*log(w(j)) entropy_two_orb(l,k) = entropy_two_orb(k,l) elseif ((w(j)).lt.(-eps)) then write(6,*) "Negative Eigenvalue. You have a big problem..." write(6,*) w(j) stop endif enddo enddo enddo deallocate (occ,zocc,ro1,ro2) END_PROVIDER BEGIN_PROVIDER [double precision, mutinf, (mo_inp_num,mo_inp_num)] implicit none BEGIN_DOC !mutinf is the mutual information (entanglement), calculated as I_ij=0.5*[S(1)_i+S(1)_j-S(2)_ij] !see the refence: 10.1016/j.chemphys.2005.10.018 END_DOC integer :: i,j ! mutal information: mutinf = 0.d0 do i=1,mo_inp_num do j=1,mo_inp_num if (j.eq.i) cycle mutinf(i,j)=-0.5d0*(entropy_two_orb(i,j)-entropy_one_orb(i)-entropy_one_orb(j)) enddo enddo END_PROVIDER