BEGIN_PROVIDER [ integer, fragment_first ] implicit none fragment_first = first_det_of_teeth(1) END_PROVIDER subroutine ZMQ_pt2(pt2,relative_error) use f77_zmq use selection_types implicit none character*(512) :: task integer(ZMQ_PTR) :: zmq_to_qp_run_socket type(selection_buffer) :: b integer, external :: omp_get_thread_num double precision, intent(in) :: relative_error double precision, intent(out) :: pt2(N_states) double precision, allocatable :: pt2_detail(:,:), comb(:) logical, allocatable :: computed(:) integer, allocatable :: tbc(:) integer :: i, j, Ncomb, generator_per_task, i_generator_end integer, external :: pt2_find double precision :: sumabove(comb_teeth), sum2above(comb_teeth), Nabove(comb_teeth) double precision, external :: omp_get_wtime double precision :: time0, time allocate(pt2_detail(N_states, N_det_generators), comb(10**5), computed(N_det_generators), tbc(0:size_tbc)) sumabove = 0d0 sum2above = 0d0 Nabove = 0d0 provide nproc !call random_seed() computed = .false. tbc(0) = first_det_of_comb - 1 do i=1, tbc(0) tbc(i) = i computed(i) = .true. end do pt2_detail = 0d0 time0 = omp_get_wtime() print *, "grep - time - avg - err - n_combs" do while(.true.) call write_time(6) call new_parallel_job(zmq_to_qp_run_socket,"pt2") call zmq_put_psi(zmq_to_qp_run_socket,1,pt2_e0_denominator,size(pt2_e0_denominator)) call zmq_set_running(zmq_to_qp_run_socket) call create_selection_buffer(1, 1*2, b) ! TODO PARAMETER : 1.d-2 Ncomb=size(comb) call get_carlo_workbatch(1d0, computed, comb, Ncomb, tbc) generator_per_task = 1 print *, 'Adding tasks...' do i=1,tbc(0) i_generator_end = min(i+generator_per_task-1, tbc(0)) if(tbc(i) > fragment_first) then integer :: zero zero = 0 write(task,*) (i_generator_end-i+1), zero, tbc(i:i_generator_end) call add_task_to_taskserver(zmq_to_qp_run_socket,task) else do j=1,fragment_count write(task,*) (i_generator_end-i+1), j, tbc(i:i_generator_end) call add_task_to_taskserver(zmq_to_qp_run_socket,task) end do end if end do call write_time(6) !$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2, relative_error) PRIVATE(i) NUM_THREADS(nproc+1) i = omp_get_thread_num() if (i==0) then call pt2_collector(b, tbc, comb, Ncomb, computed, pt2_detail, sumabove, sum2above, Nabove, relative_error, pt2) else call pt2_slave_inproc(i) endif !$OMP END PARALLEL call end_parallel_job(zmq_to_qp_run_socket, 'pt2') tbc(0) = 0 if (pt2(1) /= 0.d0) then exit endif end do end subroutine subroutine do_carlo(tbc, Ncomb, comb, pt2_detail, computed, sumabove, sum2above, Nabove) integer, intent(in) :: tbc(0:size_tbc), Ncomb logical, intent(in) :: computed(N_det_generators) double precision, intent(in) :: comb(Ncomb), pt2_detail(N_states, N_det_generators) double precision, intent(inout) :: sumabove(comb_teeth), sum2above(comb_teeth), Nabove(comb_teeth) integer :: i, dets(comb_teeth) double precision :: myVal, myVal2 mainLoop : do i=1,Ncomb call get_comb(comb(i), dets) do j=1,comb_teeth if(.not.(computed(dets(j)))) then exit mainLoop end if end do myVal = 0d0 myVal2 = 0d0 do j=comb_teeth,1,-1 myVal += pt2_detail(1, dets(j)) * pt2_weight_inv(dets(j)) * comb_step sumabove(j) += myVal sum2above(j) += myVal**2 Nabove(j) += 1 end do end do mainLoop end subroutine subroutine pt2_slave_inproc(i) implicit none integer, intent(in) :: i call run_pt2_slave(1,i,pt2_e0_denominator) end subroutine pt2_collector(b, tbc, comb, Ncomb, computed, pt2_detail, sumabove, sum2above, Nabove, relative_error, pt2) use f77_zmq use selection_types use bitmasks implicit none integer, intent(in) :: Ncomb double precision, intent(inout) :: pt2_detail(N_states, N_det_generators) double precision, intent(in) :: comb(Ncomb) logical, intent(inout) :: computed(N_det_generators) integer, intent(in) :: tbc(0:size_tbc) double precision, intent(inout) :: sumabove(comb_teeth), sum2above(comb_teeth), Nabove(comb_teeth), relative_error double precision, intent(out) :: pt2(N_states) type(selection_buffer), intent(inout) :: b double precision :: pt2_mwen(N_states, N_det) integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket integer(ZMQ_PTR) :: zmq_to_qp_run_socket integer(ZMQ_PTR), external :: new_zmq_pull_socket integer(ZMQ_PTR) :: zmq_socket_pull integer :: msg_size, rc, more integer :: acc, i, j, robin, N, ntask double precision, allocatable :: val(:) integer(bit_kind), allocatable :: det(:,:,:) integer, allocatable :: task_id(:) integer :: done, Nindex integer, allocatable :: index(:) double precision, save :: time0 = -1.d0 double precision :: time, timeLast double precision, external :: omp_get_wtime integer :: tooth, firstTBDcomb, orgTBDcomb integer, allocatable :: parts_to_get(:) logical, allocatable :: actually_computed(:) allocate(actually_computed(N_det_generators), parts_to_get(N_det_generators)) actually_computed(:) = computed(:) parts_to_get(:) = 1 if(fragment_first > 0) parts_to_get(1:fragment_first) = fragment_count do i=1,tbc(0) actually_computed(tbc(i)) = .false. end do orgTBDcomb = Nabove(1) firstTBDcomb = 1 zmq_to_qp_run_socket = new_zmq_to_qp_run_socket() zmq_socket_pull = new_zmq_pull_socket() allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det), index(N_det)) more = 1 if (time0 < 0.d0) then time0 = omp_get_wtime() endif timeLast = time0 print *, 'N_deterministic = ', first_det_of_teeth(1)-1 pullLoop : do while (more == 1) call pull_pt2_results(zmq_socket_pull, Nindex, index, pt2_mwen, task_id, ntask) do i=1,Nindex pt2_detail(:, index(i)) += pt2_mwen(:,i) parts_to_get(index(i)) -= 1 if(parts_to_get(index(i)) < 0) then print *, i, index(i), parts_to_get(index(i)), Nindex print *, "PARTS ??" print *, parts_to_get stop "PARTS ??" end if if(parts_to_get(index(i)) == 0) actually_computed(index(i)) = .true. end do do i=1, ntask if(task_id(i) == 0) then print *, "Error in collector" endif call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more) end do time = omp_get_wtime() if(time - timeLast > 1d1 .or. more /= 1) then timeLast = time do i=1, first_det_of_teeth(1)-1 if(.not.(actually_computed(i))) then print *, "PT2 : deterministic part not finished" cycle pullLoop end if end do double precision :: E0, avg, eqt, prop call do_carlo(tbc, Ncomb+1-firstTBDcomb, comb(firstTBDcomb), pt2_detail, actually_computed, sumabove, sum2above, Nabove) firstTBDcomb = Nabove(1) - orgTBDcomb + 1 if(Nabove(1) < 2d0) cycle call get_first_tooth(actually_computed, tooth) done = 0 do i=first_det_of_teeth(tooth), first_det_of_teeth(tooth+1)-1 if(actually_computed(i)) done = done + 1 end do E0 = sum(pt2_detail(1,:first_det_of_teeth(tooth)-1)) prop = ((1d0 - dfloat(comb_teeth - tooth + 1) * comb_step) - pt2_cweight(first_det_of_teeth(tooth)-1)) prop = prop * pt2_weight_inv(first_det_of_teeth(tooth)) E0 += pt2_detail(1,first_det_of_teeth(tooth)) * prop avg = E0 + (sumabove(tooth) / Nabove(tooth)) eqt = sqrt(1d0 / (Nabove(tooth)-1) * abs(sum2above(tooth) / Nabove(tooth) - (sumabove(tooth)/Nabove(tooth))**2)) time = omp_get_wtime() print "(A, 4(E15.7), 4(I9))", "PT2stoch ", time - time0, avg, eqt, Nabove(tooth), tooth, first_det_of_teeth(tooth)-1, done, first_det_of_teeth(tooth+1)-first_det_of_teeth(tooth) if (dabs(eqt/avg) < relative_error) then relative_error = 0.d0 pt2(1) = avg exit endif end if end do pullLoop call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket) call end_zmq_pull_socket(zmq_socket_pull) call sort_selection_buffer(b) end subroutine integer function pt2_find(v, w, sze) implicit none integer, intent(in) :: sze double precision, intent(in) :: v, w(sze) integer :: i,l,h l = 0 h = N_det-1 do while(h >= l) i = ishft(h+l,-1) if(w(i+1) > v) then h = i-1 else l = i+1 end if end do pt2_find = l+1 end function BEGIN_PROVIDER [ integer, comb_teeth ] implicit none comb_teeth = 100 END_PROVIDER subroutine get_first_tooth(computed, first_teeth) implicit none logical, intent(in) :: computed(N_det_generators) integer, intent(out) :: first_teeth integer :: i, first_det first_det = 1 first_teeth = 1 do i=first_det_of_comb, N_det_generators if(.not.(computed(i))) then first_det = i exit end if end do do i=comb_teeth, 1, -1 if(first_det_of_teeth(i) < first_det) then first_teeth = i exit end if end do end subroutine subroutine get_last_full_tooth(computed, last_tooth) implicit none logical, intent(in) :: computed(N_det_generators) integer, intent(out) :: last_tooth integer :: i, j, missing last_tooth = 0 combLoop : do i=comb_teeth, 1, -1 missing = 1+ ishft(first_det_of_teeth(i+1)-first_det_of_teeth(i),-7) ! /128 do j=first_det_of_teeth(i), first_det_of_teeth(i+1)-1 if(.not.computed(j)) then missing -= 1 if(missing < 0) cycle combLoop end if end do last_tooth = i exit end do combLoop end subroutine BEGIN_PROVIDER [ integer, size_tbc ] size_tbc = N_det_generators + fragment_count*fragment_first END_PROVIDER subroutine get_carlo_workbatch(maxWorkload, computed, comb, Ncomb, tbc) implicit none double precision, intent(in) :: maxWorkload double precision, intent(out) :: comb(Ncomb) integer, intent(inout) :: tbc(0:size_tbc) integer, intent(inout) :: Ncomb logical, intent(inout) :: computed(N_det_generators) integer :: i, j, last_full, dets(comb_teeth) double precision :: myWorkload myWorkload = 0d0 call RANDOM_NUMBER(comb) do i=1,size(comb) comb(i) = comb(i) * comb_step !DIR$ FORCEINLINE call add_comb(comb(i), computed, tbc, myWorkload) Ncomb = i call get_last_full_tooth(computed, last_full) if(Ncomb >= 30 .and. last_full /= 0) then do j=1,first_det_of_teeth(last_full+1)-1 if(.not.(computed(j))) then tbc(0) += 1 tbc(tbc(0)) = j computed(j) = .true. myWorkload += comb_workload(j) print *, "filled ", j, "to reach tooth", last_full, "ending at", first_det_of_teeth(last_full+1) end if end do end if if(myWorkload > maxWorkload) exit end do end subroutine subroutine reorder_tbc(tbc) implicit none integer, intent(inout) :: tbc(0:size_tbc) logical, allocatable :: ltbc(:) integer :: i, ci allocate(ltbc(size_tbc)) ltbc(:) = .false. do i=1,tbc(0) ltbc(tbc(i)) = .true. end do ci = 0 do i=1,size_tbc if(ltbc(i)) then ci = ci+1 tbc(ci) = i end if end do end subroutine subroutine get_comb(stato, dets) implicit none double precision, intent(in) :: stato integer, intent(out) :: dets(comb_teeth) double precision :: curs integer :: j integer, external :: pt2_find curs = 1d0 - stato do j = comb_teeth, 1, -1 !DIR$ FORCEINLINE dets(j) = pt2_find(curs, pt2_cweight,N_det_generators) curs -= comb_step end do end subroutine subroutine add_comb(comb, computed, tbc, workload) implicit none double precision, intent(in) :: comb logical, intent(inout) :: computed(N_det_generators) double precision, intent(inout) :: workload integer, intent(inout) :: tbc(0:size_tbc) integer :: i, dets(comb_teeth) !DIR$ FORCEINLINE call get_comb(comb, dets) do i = 1, comb_teeth if(.not.(computed(dets(i)))) then tbc(0) += 1 tbc(tbc(0)) = dets(i) workload += comb_workload(dets(i)) computed(dets(i)) = .true. end if end do end subroutine BEGIN_PROVIDER [ double precision, pt2_weight, (N_det_generators) ] &BEGIN_PROVIDER [ double precision, pt2_cweight, (N_det_generators) ] &BEGIN_PROVIDER [ double precision, comb_workload, (N_det_generators) ] &BEGIN_PROVIDER [ double precision, comb_step ] &BEGIN_PROVIDER [ integer, first_det_of_teeth, (comb_teeth+1) ] &BEGIN_PROVIDER [ integer, first_det_of_comb ] implicit none integer :: i double precision :: norm_left, stato integer, external :: pt2_find pt2_weight(1) = psi_coef_generators(1,1)**2 pt2_cweight(1) = psi_coef_generators(1,1)**2 do i=2,N_det_generators pt2_weight(i) = psi_coef_generators(i,1)**2 pt2_cweight(i) = pt2_cweight(i-1) + psi_coef_generators(i,1)**2 end do pt2_weight = pt2_weight / pt2_cweight(N_det_generators) pt2_cweight = pt2_cweight / pt2_cweight(N_det_generators) comb_workload = 1d0 / dfloat(N_det_generators) norm_left = 1d0 comb_step = 1d0/dfloat(comb_teeth) do i=1,N_det_generators if(pt2_weight(i)/norm_left < comb_step*.5d0) then first_det_of_comb = i exit end if norm_left -= pt2_weight(i) end do comb_step = (1d0 - pt2_cweight(first_det_of_comb-1)) * comb_step stato = 1d0 - comb_step! + 1d-5 do i=comb_teeth, 1, -1 first_det_of_teeth(i) = pt2_find(stato, pt2_cweight, N_det_generators) stato -= comb_step end do first_det_of_teeth(comb_teeth+1) = N_det_generators + 1 first_det_of_teeth(1) = first_det_of_comb if(first_det_of_teeth(1) /= first_det_of_comb) then print *, 'Error in ', irp_here stop "comb provider" endif END_PROVIDER BEGIN_PROVIDER [ double precision, pt2_weight_inv, (N_det_generators) ] implicit none BEGIN_DOC ! Inverse of pt2_weight array END_DOC integer :: i do i=1,N_det_generators pt2_weight_inv(i) = 1.d0/pt2_weight(i) enddo END_PROVIDER