use bitmasks BEGIN_PROVIDER [ integer, N_mrcc_teeth ] N_mrcc_teeth = 10 END_PROVIDER BEGIN_PROVIDER [ double precision, mrcc_norm_acc, (0:N_det_non_ref, N_states) ] &BEGIN_PROVIDER [ double precision, mrcc_norm, (0:N_det_non_ref, N_states) ] &BEGIN_PROVIDER [ double precision, mrcc_teeth_size, (0:N_det_non_ref, N_states) ] &BEGIN_PROVIDER [ integer, mrcc_teeth, (0:N_mrcc_teeth+1, N_states) ] implicit none integer :: i, j, st, nt double precision :: norm_sto, jump, norm_mwen, norm_loc if(N_states /= 1) stop "mrcc_sto may not work with N_states /= 1" do st=1,N_states !norm_non_ref = 1d0 !do i=1,N_det_ref ! norm_non_ref -= psi_ref_coef(i,st)**2 !end do mrcc_teeth(0,st) = 1 !norm_non_sto = norm_non_ref norm_sto = 1d0 do i=1,N_det mrcc_teeth(1,st) = i jump = (1d0 / dfloat(N_mrcc_teeth)) * norm_sto if(psi_coef_generators(i,1)**2 < jump / 2d0) exit !if(i==80) exit norm_sto -= psi_coef_generators(i,1)**2 end do print *, "FIRST", mrcc_teeth(1,st) norm_loc = 0d0 mrcc_norm_acc(0,st) = 0d0 nt = 1 do i=1,mrcc_teeth(1,st)-1 mrcc_norm_acc(i,st) = mrcc_norm_acc(i-1,st) + psi_coef_generators(i,st)**2 end do do i=mrcc_teeth(1,st), N_det_generators!-mrcc_teeth(1,st)+1 norm_mwen = psi_coef_generators(i,st)**2!-1+mrcc_teeth(1,st),st)**2 mrcc_norm_acc(i,st) = mrcc_norm_acc(i-1,st) + norm_mwen norm_loc += norm_mwen if(norm_loc > (jump*dfloat(nt))) then nt = nt + 1 mrcc_teeth(nt,st) = i end if end do if(nt > N_mrcc_teeth+1) then print *, "foireouse mrcc_teeth", nt, mrcc_teeth(nt,st), N_det_non_ref stop end if mrcc_teeth(N_mrcc_teeth+1,st) = N_det_non_ref+1 !mrcc_norm_acc(:,st) = mrcc_norm_acc(:,st) / norm_non_ref norm_loc = 0d0 do i=N_mrcc_teeth, 0, -1 mrcc_teeth_size(i,st) = mrcc_norm_acc(mrcc_teeth(i+1,st)-1,st) - mrcc_norm_acc(mrcc_teeth(i,st)-1, st) mrcc_norm_acc(mrcc_teeth(i,st):mrcc_teeth(i+1,st)-1,st) -= mrcc_norm_acc(mrcc_teeth(i,st)-1, st) mrcc_norm_acc(mrcc_teeth(i,st):mrcc_teeth(i+1,st)-1,st) = & mrcc_norm_acc(mrcc_teeth(i,st):mrcc_teeth(i+1,st)-1,st) / mrcc_teeth_size(i,st) mrcc_norm(mrcc_teeth(i,st), st) = mrcc_norm_acc(mrcc_teeth(i,st), st) do j=mrcc_teeth(i,st)+1, mrcc_teeth(i+1,1)-1 mrcc_norm(j,1) = mrcc_norm_acc(j, st) - mrcc_norm_acc(j-1, st) end do end do end do END_PROVIDER BEGIN_PROVIDER [ double precision, delta_ij_mrcc_sto,(N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii_mrcc_sto, (N_states, N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc_sto, (N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii_s2_mrcc_sto, (N_states, N_det_ref) ] use bitmasks implicit none integer :: gen, h, p, n, t, i, j, h1, h2, p1, p2, s1, s2, iproc integer(bit_kind) :: mask(N_int, 2), omask(N_int, 2) integer(bit_kind),allocatable :: buf(:,:,:) logical :: ok logical, external :: detEq integer, external :: omp_get_thread_num double precision :: coefs(N_det_non_ref), myCoef integer :: n_in_teeth double precision :: contrib(N_states), curn, in_teeth_step, curlim, curnorm contrib = 0d0 read(*,*) n_in_teeth !n_in_teeth = 2 in_teeth_step = 1d0 / dfloat(n_in_teeth) !double precision :: delta_ij_mrcc_tmp,(N_states,N_det_non_ref,N_det_ref) ] !double precision :: delta_ii_mrcc_tmp, (N_states,N_det_ref) ] !double precision :: delta_ij_s2_mrcc_tmp(N_states,N_det_non_ref,N_det_ref) !double precision :: delta_ii_s2_mrcc_tmp(N_states, N_det_ref) coefs = 0d0 coefs(:mrcc_teeth(1,1)-1) = 1d0 do i=1,N_mrcc_teeth print *, "TEETH SIZE", i, mrcc_teeth(i+1,1)-mrcc_teeth(i,1) if(mrcc_teeth(i+1,1) - mrcc_teeth(i,1) <= n_in_teeth) then coefs(mrcc_teeth(i,1):mrcc_teeth(i+1,1)-1) = 1d0 else if(.false.) then curnorm = 0d0 curn = 0.5d0 curlim = curn / dfloat(n_in_teeth) do j=mrcc_teeth(i,1), mrcc_teeth(i+1,1)-1 if(mrcc_norm_acc(j,1) >= curlim) then coefs(j) = 1d0 curnorm += mrcc_norm(j,1) do while(mrcc_norm_acc(j,1) > curlim) curn += 1d0 curlim = curn / dfloat(n_in_teeth) end do end if end do do j=mrcc_teeth(i,1), mrcc_teeth(i+1,1)-1 coefs(j) = coefs(j) / curnorm ! 1d0 / norm computed in teeth end do else if(.true.) then coefs(mrcc_teeth(i,1):mrcc_teeth(i,1)+n_in_teeth-1) = 1d0 / mrcc_norm_acc(mrcc_teeth(i,1)+n_in_teeth-1, 1) else curnorm = 0d0 n = mrcc_teeth(i+1,1) - mrcc_teeth(i,1) do j=1,n_in_teeth t = int((dfloat(j)-0.5d0) * dfloat(n) / dfloat(n_in_teeth)) + 1 + mrcc_teeth(i,1) - 1 curnorm += mrcc_norm(t,1) coefs(t) = 1d0 end do do j=mrcc_teeth(i,1), mrcc_teeth(i+1,1)-1 coefs(j) = coefs(j) / curnorm ! 1d0 / norm computed in teeth end do end if !coefs(mrcc_teeth(i,1)) = end do !coefs = coefs * dfloat(N_det_generators) delta_ij_mrcc_sto = 0d0 delta_ii_mrcc_sto = 0d0 delta_ij_s2_mrcc_sto = 0d0 delta_ii_s2_mrcc_sto = 0d0 PROVIDE dij provide hh_shortcut psi_det_size! lambda_mrcc !$OMP PARALLEL DO default(none) schedule(dynamic) & !$OMP shared(psi_ref, psi_non_ref, hh_exists, pp_exists, N_int, hh_shortcut) & !$OMP shared(N_det_generators, coefs,N_det_non_ref, N_det_ref, delta_ii_mrcc_sto, delta_ij_mrcc_sto) & !$OMP shared(contrib,psi_det_generators, delta_ii_s2_mrcc_sto, delta_ij_s2_mrcc_sto) & !$OMP private(i,j,curnorm,myCoef, h, n, mask, omask, buf, ok, iproc) do gen= 1,N_det_generators if(coefs(gen) == 0d0) cycle myCoef = coefs(gen) allocate(buf(N_int, 2, N_det_non_ref)) iproc = omp_get_thread_num() + 1 if(mod(gen, 1000) == 0) print *, "mrcc_sto ", gen, "/", N_det_generators do h=1, hh_shortcut(0) call apply_hole_local(psi_det_generators(1,1,gen), hh_exists(1, h), mask, ok, N_int) if(.not. ok) cycle omask = 0_bit_kind if(hh_exists(1, h) /= 0) omask = mask n = 1 do p=hh_shortcut(h), hh_shortcut(h+1)-1 call apply_particle_local(mask, pp_exists(1, p), buf(1,1,n), ok, N_int) if(ok) n = n + 1 if(n > N_det_non_ref) stop "Buffer too small in MRCC..." end do n = n - 1 if(n /= 0) then call mrcc_part_dress(delta_ij_mrcc_sto, delta_ii_mrcc_sto, delta_ij_s2_mrcc_sto, & delta_ii_s2_mrcc_sto, gen,n,buf,N_int,omask,myCoef,contrib) endif end do deallocate(buf) end do !$OMP END PARALLEL DO curnorm = 0d0 do i=1,N_det_ref do j=1,N_det_non_ref curnorm += delta_ij_mrcc_sto(1, j, i)**2 end do end do print *, "NORM DELTA ", curnorm**0.5d0 END_PROVIDER BEGIN_PROVIDER [ double precision, delta_ij_cancel, (N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii_cancel, (N_states, N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ij_s2_cancel, (N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii_s2_cancel, (N_states, N_det_ref) ] use bitmasks implicit none integer :: i_state, i, i_I, J, k, k2, k1, kk, ll, m,l, deg, ni, m2 integer :: n(2) integer :: p1,p2,h1,h2,s1,s2, blok, I_s, J_s, kn logical :: ok double precision :: phase_ia, phase_Ik, phase_Jl, phase_Ji,phase_la, phase_ka, phase_tmp double precision :: Hka, Hla, Ska, Sla, tmp double precision :: diI, hIi, hJi, delta_JI, dkI, HkI,ci_inv(N_states), cj_inv(N_states) double precision :: contrib, contrib_s2, wall, iwall integer, dimension(0:2,2,2) :: exc_iI, exc_Ik, exc_IJ, exc integer(bit_kind) :: det_tmp(N_int, 2), det_tmp2(N_int, 2),inac, virt integer, external :: get_index_in_psi_det_sorted_bit, searchDet,detCmp logical, external :: is_in_wavefunction provide dij delta_ij_cancel = 0d0 delta_ii_cancel = 0d0 do i=1,N_det_ref !$OMP PARALLEL DO default(shared) private(kk, k, blok, exc_Ik,det_tmp2,ok,deg,phase_Ik, l,ll) & !$OMP private(contrib, contrib_s2, i_state) do kk = 1, nlink(i) k = det_cepa0_idx(linked(kk, i)) blok = blokMwen(kk, i) call get_excitation(psi_ref(1,1,i),psi_non_ref(1,1,k),exc_Ik,deg,phase_Ik,N_int) do j=1,N_det_ref if(j == i) cycle call apply_excitation(psi_ref(1,1,J),exc_Ik,det_tmp2,ok,N_int) if(.not. ok) cycle l = searchDet(det_cepa0(1,1,cepa0_shortcut(blok)), det_tmp2,cepa0_shortcut(blok+1)-cepa0_shortcut(blok), N_int) if(l == -1) cycle ll = cepa0_shortcut(blok)-1+l l = det_cepa0_idx(ll) ll = child_num(ll, J) do i_state = 1, N_states contrib = (dij(j, l, i_state) - dij(i, k, i_state)) * delta_cas(i,j,i_state)! * Hla *phase_ia * phase_ik contrib_s2 = dij(j, l, i_state) - dij(i, k, i_state)! * Sla*phase_ia * phase_ik if(dabs(psi_ref_coef(i,i_state)).ge.1.d-3) then !$OMP ATOMIC delta_ij_cancel(i_state,l,i) += contrib !$OMP ATOMIC delta_ij_s2_cancel(i_state,l,i) += contrib_s2 !$OMP ATOMIC delta_ii_cancel(i_state,i) -= contrib / psi_ref_coef(i, i_state) * psi_non_ref_coef(l,i_state) !$OMP ATOMIC delta_ii_s2_cancel(i_state,i) -= contrib_s2 / psi_ref_coef(i, i_state) * psi_non_ref_coef(l,i_state) else !$OMP ATOMIC delta_ij_cancel(i_state,l,i) += contrib * 0.5d0 !$OMP ATOMIC delta_ij_s2_cancel(i_state,l,i) += contrib_s2 * 0.5d0 endif end do end do end do !$OMP END PARALLEL DO enddo END_PROVIDER BEGIN_PROVIDER [ double precision, delta_ij_mrcc, (N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii_mrcc, (N_states, N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc, (N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii_s2_mrcc, (N_states, N_det_ref) ] use bitmasks implicit none integer :: gen, h, p, n, t, i, h1, h2, p1, p2, s1, s2, iproc integer(bit_kind) :: mask(N_int, 2), omask(N_int, 2) integer(bit_kind),allocatable :: buf(:,:,:) logical :: ok logical, external :: detEq integer, external :: omp_get_thread_num double precision :: contrib(N_states) provide dij hh_shortcut psi_det_size contrib = 0d0 delta_ij_mrcc = 0d0 delta_ii_mrcc = 0d0 delta_ij_s2_mrcc = 0d0 delta_ii_s2_mrcc = 0d0 !$OMP PARALLEL DO default(none) schedule(dynamic) & !$OMP shared(contrib,psi_det_generators, N_det_generators, hh_exists, pp_exists, N_int, hh_shortcut) & !$OMP shared(N_det_non_ref, N_det_ref, delta_ii_mrcc, delta_ij_mrcc, delta_ii_s2_mrcc, delta_ij_s2_mrcc) & !$OMP private(h, n, mask, omask, buf, ok, iproc) do gen= 1, N_det_generators allocate(buf(N_int, 2, N_det_non_ref)) iproc = omp_get_thread_num() + 1 if(mod(gen, 1000) == 0) print *, "mrcc ", gen, "/", N_det_generators do h=1, hh_shortcut(0) call apply_hole_local(psi_det_generators(1,1,gen), hh_exists(1, h), mask, ok, N_int) if(.not. ok) cycle omask = 0_bit_kind if(hh_exists(1, h) /= 0) omask = mask n = 1 do p=hh_shortcut(h), hh_shortcut(h+1)-1 call apply_particle_local(mask, pp_exists(1, p), buf(1,1,n), ok, N_int) if(ok) n = n + 1 if(n > N_det_non_ref) stop "Buffer too small in MRCC..." end do n = n - 1 if(n /= 0) then call mrcc_part_dress(delta_ij_mrcc, delta_ii_mrcc, delta_ij_s2_mrcc, delta_ii_s2_mrcc, gen,n,buf,N_int,omask,1d0,contrib) endif end do deallocate(buf) end do !$OMP END PARALLEL DO END_PROVIDER ! subroutine blit(b1, b2) ! double precision :: b1(N_states,N_det_non_ref,N_det_ref), b2(N_states,N_det_non_ref,N_det_ref) ! b1 = b1 + b2 ! end subroutine subroutine mrcc_part_dress(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_generator,n_selected,det_buffer,Nint,key_mask,coef,contrib) use bitmasks implicit none integer, intent(in) :: i_generator,n_selected, Nint double precision, intent(inout) :: delta_ij_(N_states,N_det_non_ref,N_det_ref) double precision, intent(inout) :: delta_ii_(N_states,N_det_ref) double precision, intent(inout) :: delta_ij_s2_(N_states,N_det_non_ref,N_det_ref) double precision, intent(inout) :: delta_ii_s2_(N_states,N_det_ref) integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) integer :: i,j,k,l,m integer,allocatable :: idx_alpha(:), degree_alpha(:) logical :: good, fullMatch integer(bit_kind),allocatable :: tq(:,:,:) integer :: N_tq, c_ref ,degree1, degree2, degree double precision :: hIk, hla, hIl, sla, dIk(N_states), dka(N_states), dIa(N_states), hka double precision, allocatable :: dIa_hla(:,:), dIa_sla(:,:) double precision :: haj, phase, phase2 double precision :: f(N_states), ci_inv(N_states) integer :: exc(0:2,2,2) integer :: h1,h2,p1,p2,s1,s2 integer(bit_kind) :: tmp_det(Nint,2) integer :: iint, ipos integer :: i_state, k_sd, l_sd, i_I, i_alpha integer(bit_kind),allocatable :: miniList(:,:,:) integer(bit_kind),intent(in) :: key_mask(Nint, 2) integer,allocatable :: idx_miniList(:) integer :: N_miniList, ni, leng double precision, allocatable :: hij_cache(:), sij_cache(:) integer(bit_kind), allocatable :: microlist(:,:,:), microlist_zero(:,:,:) integer, allocatable :: idx_microlist(:), N_microlist(:), ptr_microlist(:), idx_microlist_zero(:) integer :: mobiles(2), smallerlist logical, external :: detEq, is_generable !double precision, external :: get_dij, get_dij_index double precision :: Delta_E_inv(N_states) double precision, intent(in) :: coef double precision, intent(inout) :: contrib(N_states) double precision :: sdress, hdress if (perturbative_triples) then PROVIDE one_anhil fock_virt_total fock_core_inactive_total one_creat endif leng = max(N_det_generators, N_det_non_ref) allocate(miniList(Nint, 2, leng), tq(Nint,2,n_selected), idx_minilist(leng), hij_cache(N_det_non_ref), sij_cache(N_det_non_ref)) allocate(idx_alpha(0:psi_det_size), degree_alpha(psi_det_size)) call create_minilist_find_previous(key_mask, psi_det_generators, miniList, i_generator-1, N_miniList, fullMatch, Nint) allocate(ptr_microlist(0:mo_tot_num*2+1), & N_microlist(0:mo_tot_num*2) ) allocate( microlist(Nint,2,N_minilist*4), & idx_microlist(N_minilist*4)) if(key_mask(1,1) /= 0) then call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint) call filter_tq_micro(i_generator,n_selected,det_buffer,Nint,tq,N_tq,microlist,ptr_microlist,N_microlist,key_mask) else call filter_tq(i_generator,n_selected,det_buffer,Nint,tq,N_tq,miniList,N_minilist) end if deallocate(microlist, idx_microlist) allocate (dIa_hla(N_states,N_det_non_ref), dIa_sla(N_states,N_det_non_ref)) ! |I> ! |alpha> if(N_tq > 0) then call create_minilist(key_mask, psi_non_ref, miniList, idx_minilist, N_det_non_ref, N_minilist, Nint) if(N_minilist == 0) return if(sum(abs(key_mask(1:N_int,1))) /= 0) then allocate(microlist_zero(Nint,2,N_minilist), idx_microlist_zero(N_minilist)) allocate( microlist(Nint,2,N_minilist*4), & idx_microlist(N_minilist*4)) call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint) do i=0,mo_tot_num*2 do k=ptr_microlist(i),ptr_microlist(i+1)-1 idx_microlist(k) = idx_minilist(idx_microlist(k)) end do end do do l=1,N_microlist(0) do k=1,Nint microlist_zero(k,1,l) = microlist(k,1,l) microlist_zero(k,2,l) = microlist(k,2,l) enddo idx_microlist_zero(l) = idx_microlist(l) enddo end if end if do i_alpha=1,N_tq if(key_mask(1,1) /= 0) then call getMobiles(tq(1,1,i_alpha), key_mask, mobiles, Nint) if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then smallerlist = mobiles(1) else smallerlist = mobiles(2) end if do l=0,N_microlist(smallerlist)-1 microlist_zero(:,:,ptr_microlist(1) + l) = microlist(:,:,ptr_microlist(smallerlist) + l) idx_microlist_zero(ptr_microlist(1) + l) = idx_microlist(ptr_microlist(smallerlist) + l) end do call get_excitation_degree_vector(microlist_zero,tq(1,1,i_alpha),degree_alpha,Nint,N_microlist(smallerlist)+N_microlist(0),idx_alpha) do j=1,idx_alpha(0) idx_alpha(j) = idx_microlist_zero(idx_alpha(j)) end do else call get_excitation_degree_vector(miniList,tq(1,1,i_alpha),degree_alpha,Nint,N_minilist,idx_alpha) do j=1,idx_alpha(0) idx_alpha(j) = idx_miniList(idx_alpha(j)) end do end if do l_sd=1,idx_alpha(0) k_sd = idx_alpha(l_sd) call i_h_j(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hij_cache(k_sd)) call get_s2(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,sij_cache(k_sd)) !if(sij_cache(k_sd) /= 0D0) PRINT *, "SIJ ", sij_cache(k_sd) enddo ! |I> do i_I=1,N_det_ref ! Find triples and quadruple grand parents call get_excitation_degree(tq(1,1,i_alpha),psi_ref(1,1,i_I),degree1,Nint) if (degree1 > 4) then cycle endif do i_state=1,N_states dIa(i_state) = 0.d0 enddo ! |alpha> do k_sd=1,idx_alpha(0) call get_excitation_degree(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(k_sd)),degree,Nint) if (degree > 2) then cycle endif ! ! |l> = Exc(k -> alpha) |I> call get_excitation(psi_non_ref(1,1,idx_alpha(k_sd)),tq(1,1,i_alpha),exc,degree2,phase,Nint) call decode_exc(exc,degree2,h1,p1,h2,p2,s1,s2) do k=1,N_int tmp_det(k,1) = psi_ref(k,1,i_I) tmp_det(k,2) = psi_ref(k,2,i_I) enddo logical :: ok call apply_excitation(psi_ref(1,1,i_I), exc, tmp_det, ok, Nint) do i_state=1,N_states dIK(i_state) = dij(i_I, idx_alpha(k_sd), i_state) enddo ! do i_state=1,N_states dka(i_state) = 0.d0 enddo if (ok) then do l_sd=k_sd+1,idx_alpha(0) call get_excitation_degree(tmp_det,psi_non_ref(1,1,idx_alpha(l_sd)),degree,Nint) if (degree == 0) then call get_excitation(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(l_sd)),exc,degree,phase2,Nint) do i_state=1,N_states dka(i_state) = dij(i_I, idx_alpha(l_sd), i_state) * phase * phase2 enddo exit endif enddo else if (perturbative_triples) then ! Linked hka = hij_cache(idx_alpha(k_sd)) if (dabs(hka) > 1.d-12) then call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv) do i_state=1,N_states ASSERT (Delta_E_inv(i_state) < 0.d0) dka(i_state) = hka / Delta_E_inv(i_state) enddo endif endif if (perturbative_triples.and. (degree2 == 1) ) then call i_h_j(psi_ref(1,1,i_I),tmp_det,Nint,hka) hka = hij_cache(idx_alpha(k_sd)) - hka if (dabs(hka) > 1.d-12) then call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv) do i_state=1,N_states ASSERT (Delta_E_inv(i_state) < 0.d0) dka(i_state) = hka / Delta_E_inv(i_state) enddo endif endif do i_state=1,N_states dIa(i_state) = dIa(i_state) + dIk(i_state) * dka(i_state) enddo enddo do i_state=1,N_states ci_inv(i_state) = psi_ref_coef_inv(i_I,i_state) enddo do l_sd=1,idx_alpha(0) k_sd = idx_alpha(l_sd) hla = hij_cache(k_sd) sla = sij_cache(k_sd) do i_state=1,N_states dIa_hla(i_state,k_sd) = dIa(i_state) * hla * coef dIa_sla(i_state,k_sd) = dIa(i_state) * sla * coef enddo enddo do i_state=1,N_states if(dabs(psi_ref_coef(1,i_state)).ge.1.d-3)then do l_sd=1,idx_alpha(0) k_sd = idx_alpha(l_sd) p1 = 1 hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state) sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state) !$OMP ATOMIC contrib(i_state) += hdress * psi_ref_coef(p1, i_state) * psi_non_ref_coef(k_sd, i_state) !$OMP ATOMIC delta_ij_(i_state,k_sd,p1) += hdress !$OMP ATOMIC !delta_ii_(i_state,i_I) = delta_ii_(i_state,i_I) - dIa_hla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd) delta_ii_(i_state,p1) -= hdress / psi_ref_coef(p1,i_state) * psi_non_ref_coef_transp(i_state,k_sd) !$OMP ATOMIC delta_ij_s2_(i_state,k_sd,p1) += sdress !$OMP ATOMIC !delta_ii_s2_(i_state,i_I) = delta_ii_s2_(i_state,i_I) - dIa_sla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd) delta_ii_s2_(i_state,p1) -= sdress / psi_ref_coef(p1,i_state) * psi_non_ref_coef_transp(i_state,k_sd) enddo else !stop "dress with coef < 1d-3" delta_ii_(i_state,1) = 0.d0 do l_sd=1,idx_alpha(0) k_sd = idx_alpha(l_sd) p1 = 1 hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state) sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state) !$OMP ATOMIC delta_ij_(i_state,k_sd,p1) = delta_ij_(i_state,k_sd,p1) + 0.5d0*hdress !$OMP ATOMIC delta_ij_s2_(i_state,k_sd,p1) = delta_ij_s2_(i_state,k_sd,p1) + 0.5d0*sdress enddo endif enddo enddo enddo deallocate (dIa_hla,dIa_sla,hij_cache,sij_cache) deallocate(miniList, idx_miniList) end subroutine mrcc_part_dress_1c(delta_ij_, delta_ii_,delta_ij_s2_, delta_ii_s2_,i_generator,n_selected,det_buffer,Nint,key_mask,contrib) use bitmasks implicit none integer, intent(in) :: i_generator,n_selected, Nint double precision, intent(inout) :: delta_ij_(N_states,N_det_non_ref) double precision, intent(inout) :: delta_ii_(N_states) double precision, intent(inout) :: delta_ij_s2_(N_states,N_det_non_ref) double precision, intent(inout) :: delta_ii_s2_(N_states) integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) integer :: i,j,k,l,m integer,allocatable :: idx_alpha(:), degree_alpha(:) logical :: good, fullMatch integer(bit_kind),allocatable :: tq(:,:,:) integer :: N_tq, c_ref ,degree1, degree2, degree double precision :: hIk, hla, hIl, sla, dIk(N_states), dka(N_states), dIa(N_states), hka double precision, allocatable :: dIa_hla(:,:), dIa_sla(:,:) double precision :: haj, phase, phase2 double precision :: f(N_states), ci_inv(N_states) integer :: exc(0:2,2,2) integer :: h1,h2,p1,p2,s1,s2 integer(bit_kind) :: tmp_det(Nint,2) integer :: iint, ipos integer :: i_state, k_sd, l_sd, i_I, i_alpha integer(bit_kind),allocatable :: miniList(:,:,:) integer(bit_kind),intent(in) :: key_mask(Nint, 2) integer,allocatable :: idx_miniList(:) integer :: N_miniList, ni, leng double precision, allocatable :: hij_cache(:), sij_cache(:) integer(bit_kind), allocatable :: microlist(:,:,:), microlist_zero(:,:,:) integer, allocatable :: idx_microlist(:), N_microlist(:), ptr_microlist(:), idx_microlist_zero(:) integer :: mobiles(2), smallerlist logical, external :: detEq, is_generable !double precision, external :: get_dij, get_dij_index double precision :: Delta_E_inv(N_states) double precision, intent(inout) :: contrib(N_states) double precision :: sdress, hdress if (perturbative_triples) then PROVIDE one_anhil fock_virt_total fock_core_inactive_total one_creat endif leng = max(N_det_generators, N_det_non_ref) allocate(miniList(Nint, 2, leng), tq(Nint,2,n_selected), idx_minilist(leng), hij_cache(N_det_non_ref), sij_cache(N_det_non_ref)) allocate(idx_alpha(0:psi_det_size), degree_alpha(psi_det_size)) call create_minilist_find_previous(key_mask, psi_det_generators, miniList, i_generator-1, N_miniList, fullMatch, Nint) allocate(ptr_microlist(0:mo_tot_num*2+1), & N_microlist(0:mo_tot_num*2) ) allocate( microlist(Nint,2,N_minilist*4), & idx_microlist(N_minilist*4)) if(key_mask(1,1) /= 0) then call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint) call filter_tq_micro(i_generator,n_selected,det_buffer,Nint,tq,N_tq,microlist,ptr_microlist,N_microlist,key_mask) else call filter_tq(i_generator,n_selected,det_buffer,Nint,tq,N_tq,miniList,N_minilist) end if deallocate(microlist, idx_microlist) allocate (dIa_hla(N_states,N_det_non_ref), dIa_sla(N_states,N_det_non_ref)) ! |I> ! |alpha> if(N_tq > 0) then call create_minilist(key_mask, psi_non_ref, miniList, idx_minilist, N_det_non_ref, N_minilist, Nint) if(N_minilist == 0) return if(sum(abs(key_mask(1:N_int,1))) /= 0) then allocate(microlist_zero(Nint,2,N_minilist), idx_microlist_zero(N_minilist)) allocate( microlist(Nint,2,N_minilist*4), & idx_microlist(N_minilist*4)) call create_microlist(miniList, N_minilist, key_mask, microlist, idx_microlist, N_microlist, ptr_microlist, Nint) do i=0,mo_tot_num*2 do k=ptr_microlist(i),ptr_microlist(i+1)-1 idx_microlist(k) = idx_minilist(idx_microlist(k)) end do end do do l=1,N_microlist(0) do k=1,Nint microlist_zero(k,1,l) = microlist(k,1,l) microlist_zero(k,2,l) = microlist(k,2,l) enddo idx_microlist_zero(l) = idx_microlist(l) enddo end if end if do i_alpha=1,N_tq if(key_mask(1,1) /= 0) then call getMobiles(tq(1,1,i_alpha), key_mask, mobiles, Nint) if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then smallerlist = mobiles(1) else smallerlist = mobiles(2) end if do l=0,N_microlist(smallerlist)-1 microlist_zero(:,:,ptr_microlist(1) + l) = microlist(:,:,ptr_microlist(smallerlist) + l) idx_microlist_zero(ptr_microlist(1) + l) = idx_microlist(ptr_microlist(smallerlist) + l) end do call get_excitation_degree_vector(microlist_zero,tq(1,1,i_alpha),degree_alpha,Nint,N_microlist(smallerlist)+N_microlist(0),idx_alpha) do j=1,idx_alpha(0) idx_alpha(j) = idx_microlist_zero(idx_alpha(j)) end do else call get_excitation_degree_vector(miniList,tq(1,1,i_alpha),degree_alpha,Nint,N_minilist,idx_alpha) do j=1,idx_alpha(0) idx_alpha(j) = idx_miniList(idx_alpha(j)) end do end if do l_sd=1,idx_alpha(0) k_sd = idx_alpha(l_sd) call i_h_j(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,hij_cache(k_sd)) call get_s2(tq(1,1,i_alpha),psi_non_ref(1,1,idx_alpha(l_sd)),Nint,sij_cache(k_sd)) !if(sij_cache(k_sd) /= 0D0) PRINT *, "SIJ ", sij_cache(k_sd) enddo ! |I> do i_I=1,N_det_ref ! Find triples and quadruple grand parents call get_excitation_degree(tq(1,1,i_alpha),psi_ref(1,1,i_I),degree1,Nint) if (degree1 > 4) then cycle endif do i_state=1,N_states dIa(i_state) = 0.d0 enddo ! |alpha> do k_sd=1,idx_alpha(0) call get_excitation_degree(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(k_sd)),degree,Nint) if (degree > 2) then cycle endif ! ! |l> = Exc(k -> alpha) |I> call get_excitation(psi_non_ref(1,1,idx_alpha(k_sd)),tq(1,1,i_alpha),exc,degree2,phase,Nint) call decode_exc(exc,degree2,h1,p1,h2,p2,s1,s2) do k=1,N_int tmp_det(k,1) = psi_ref(k,1,i_I) tmp_det(k,2) = psi_ref(k,2,i_I) enddo logical :: ok call apply_excitation(psi_ref(1,1,i_I), exc, tmp_det, ok, Nint) do i_state=1,N_states dIK(i_state) = dij(i_I, idx_alpha(k_sd), i_state) enddo ! do i_state=1,N_states dka(i_state) = 0.d0 enddo if (ok) then do l_sd=k_sd+1,idx_alpha(0) call get_excitation_degree(tmp_det,psi_non_ref(1,1,idx_alpha(l_sd)),degree,Nint) if (degree == 0) then call get_excitation(psi_ref(1,1,i_I),psi_non_ref(1,1,idx_alpha(l_sd)),exc,degree,phase2,Nint) do i_state=1,N_states dka(i_state) = dij(i_I, idx_alpha(l_sd), i_state) * phase * phase2 enddo exit endif enddo else if (perturbative_triples) then ! Linked hka = hij_cache(idx_alpha(k_sd)) if (dabs(hka) > 1.d-12) then call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv) do i_state=1,N_states ASSERT (Delta_E_inv(i_state) < 0.d0) dka(i_state) = hka / Delta_E_inv(i_state) enddo endif endif if (perturbative_triples.and. (degree2 == 1) ) then call i_h_j(psi_ref(1,1,i_I),tmp_det,Nint,hka) hka = hij_cache(idx_alpha(k_sd)) - hka if (dabs(hka) > 1.d-12) then call get_delta_e_dyall_general_mp(psi_ref(1,1,i_I),tq(1,1,i_alpha),Delta_E_inv) do i_state=1,N_states ASSERT (Delta_E_inv(i_state) < 0.d0) dka(i_state) = hka / Delta_E_inv(i_state) enddo endif endif do i_state=1,N_states dIa(i_state) = dIa(i_state) + dIk(i_state) * dka(i_state) enddo enddo do i_state=1,N_states ci_inv(i_state) = psi_ref_coef_inv(i_I,i_state) enddo do l_sd=1,idx_alpha(0) k_sd = idx_alpha(l_sd) hla = hij_cache(k_sd) sla = sij_cache(k_sd) do i_state=1,N_states dIa_hla(i_state,k_sd) = dIa(i_state) * hla dIa_sla(i_state,k_sd) = dIa(i_state) * sla enddo enddo do i_state=1,N_states if(dabs(psi_ref_coef(1,i_state)).ge.1.d-3)then do l_sd=1,idx_alpha(0) k_sd = idx_alpha(l_sd) p1 = 1 hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state) sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state) !$OMP ATOMIC contrib(i_state) += hdress * psi_ref_coef(p1, i_state) * psi_non_ref_coef(k_sd, i_state) !$OMP ATOMIC delta_ij_(i_state,k_sd) += hdress !$OMP ATOMIC !delta_ii_(i_state,i_I) = delta_ii_(i_state,i_I) - dIa_hla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd) delta_ii_(i_state) -= hdress / psi_ref_coef(p1,i_state) * psi_non_ref_coef_transp(i_state,k_sd) !$OMP ATOMIC delta_ij_s2_(i_state,k_sd) += sdress !$OMP ATOMIC !delta_ii_s2_(i_state,i_I) = delta_ii_s2_(i_state,i_I) - dIa_sla(i_state,k_sd) * ci_inv(i_state) * psi_non_ref_coef_transp(i_state,k_sd) delta_ii_s2_(i_state) -= sdress / psi_ref_coef(p1,i_state) * psi_non_ref_coef_transp(i_state,k_sd) enddo else !stop "dress with coef < 1d-3" delta_ii_(i_state) = 0.d0 do l_sd=1,idx_alpha(0) k_sd = idx_alpha(l_sd) p1 = 1 hdress = dIa_hla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state) sdress = dIa_sla(i_state,k_sd) * psi_ref_coef(i_I,i_state) / psi_ref_coef(p1,i_state) !$OMP ATOMIC delta_ij_(i_state,k_sd) = delta_ij_(i_state,k_sd) + 0.5d0*hdress !$OMP ATOMIC delta_ij_s2_(i_state,k_sd) = delta_ij_s2_(i_state,k_sd) + 0.5d0*sdress enddo endif enddo enddo enddo deallocate (dIa_hla,dIa_sla,hij_cache,sij_cache) deallocate(miniList, idx_miniList) end BEGIN_PROVIDER [ double precision, mrcc_previous_E, (N_states) ] implicit none BEGIN_DOC !energy difference between last two mrcc iterations END_DOC mrcc_previous_E(:) = ref_bitmask_energy END_PROVIDER BEGIN_PROVIDER [ double precision, delta_ij_mrcc_zmq, (N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii_mrcc_zmq, (N_states, N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ij_s2_mrcc_zmq, (N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii_s2_mrcc_zmq, (N_states, N_det_ref) ] use bitmasks implicit none integer :: i,j,k double precision, allocatable :: mrcc(:) double precision :: E_CI_before, relative_error double precision, save :: errr = 0d0 allocate(mrcc(N_states)) delta_ij_mrcc_zmq = 0d0 delta_ii_mrcc_zmq = 0d0 delta_ij_s2_mrcc_zmq = 0d0 delta_ii_s2_mrcc_zmq = 0d0 !call random_seed() E_CI_before = mrcc_E0_denominator(1) + nuclear_repulsion threshold_selectors = 1.d0 threshold_generators = 1d0 if(errr /= 0d0) then errr = errr / 2d0 ! (-mrcc_E0_denominator(1) + mrcc_previous_E(1)) / 1d1 else errr = 1d-4 end if relative_error = errr print *, "RELATIVE ERROR", relative_error call ZMQ_mrcc(E_CI_before, mrcc, delta_ij_mrcc_zmq, delta_ij_s2_mrcc_zmq, abs(relative_error)) mrcc_previous_E(:) = mrcc_E0_denominator(:) do i=N_det_non_ref,1,-1 delta_ii_mrcc_zmq(:,1) -= delta_ij_mrcc_zmq(:, i, 1) / psi_ref_coef(1,1) * psi_non_ref_coef(i, 1) delta_ii_s2_mrcc_zmq(:,1) -= delta_ij_s2_mrcc_zmq(:, i, 1) / psi_ref_coef(1,1) * psi_non_ref_coef(i, 1) end do END_PROVIDER BEGIN_PROVIDER [ double precision, delta_ij, (N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii, (N_states, N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ij_s2, (N_states,N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, delta_ii_s2, (N_states, N_det_ref) ] use bitmasks implicit none integer :: i, j, i_state !mrmode : 1=mrcepa0, 2=mrsc2 add, 3=mrcc if(mrmode == 4) then do i = 1, N_det_ref do i_state = 1, N_states delta_ii(i_state,i)= delta_ii_mrcc_sto(i_state,i) delta_ii_s2(i_state,i)= delta_ii_s2_mrcc_sto(i_state,i) enddo do j = 1, N_det_non_ref do i_state = 1, N_states delta_ij(i_state,j,i) = delta_ij_mrcc_sto(i_state,j,i) delta_ij_s2(i_state,j,i) = delta_ij_s2_mrcc_sto(i_state,j,i) enddo end do end do ! else if(mrmode == 10) then ! do i = 1, N_det_ref ! do i_state = 1, N_states ! delta_ii(i_state,i)= delta_ii_mrsc2(i_state,i) ! delta_ii_s2(i_state,i)= delta_ii_s2_mrsc2(i_state,i) ! enddo ! do j = 1, N_det_non_ref ! do i_state = 1, N_states ! delta_ij(i_state,j,i) = delta_ij_mrsc2(i_state,j,i) ! delta_ij_s2(i_state,j,i) = delta_ij_s2_mrsc2(i_state,j,i) ! enddo ! end do ! end do else if(mrmode == 5) then do i = 1, N_det_ref do i_state = 1, N_states delta_ii(i_state,i)= delta_ii_mrcc_zmq(i_state,i) delta_ii_s2(i_state,i)= delta_ii_s2_mrcc_zmq(i_state,i) enddo do j = 1, N_det_non_ref do i_state = 1, N_states delta_ij(i_state,j,i) = delta_ij_mrcc_zmq(i_state,j,i) delta_ij_s2(i_state,j,i) = delta_ij_s2_mrcc_zmq(i_state,j,i) enddo end do end do else if(mrmode == 3) then do i = 1, N_det_ref do i_state = 1, N_states delta_ii(i_state,i)= delta_ii_mrcc(i_state,i) delta_ii_s2(i_state,i)= delta_ii_s2_mrcc(i_state,i) enddo do j = 1, N_det_non_ref do i_state = 1, N_states delta_ij(i_state,j,i) = delta_ij_mrcc(i_state,j,i) delta_ij_s2(i_state,j,i) = delta_ij_s2_mrcc(i_state,j,i) enddo end do end do ! =-=-= BEGIN STATE AVERAGE ! do i = 1, N_det_ref ! delta_ii(:,i)= delta_ii_mrcc(1,i) ! delta_ii_s2(:,i)= delta_ii_s2_mrcc(1,i) ! do i_state = 2, N_states ! delta_ii(:,i) += delta_ii_mrcc(i_state,i) ! delta_ii_s2(:,i) += delta_ii_s2_mrcc(i_state,i) ! enddo ! do j = 1, N_det_non_ref ! delta_ij(:,j,i) = delta_ij_mrcc(1,j,i) ! delta_ij_s2(:,j,i) = delta_ij_s2_mrcc(1,j,i) ! do i_state = 2, N_states ! delta_ij(:,j,i) += delta_ij_mrcc(i_state,j,i) ! delta_ij_s2(:,j,i) += delta_ij_s2_mrcc(i_state,j,i) ! enddo ! end do ! end do ! delta_ij = delta_ij * (1.d0/dble(N_states)) ! delta_ii = delta_ii * (1.d0/dble(N_states)) ! =-=-= END STATE AVERAGE ! ! do i = 1, N_det_ref ! delta_ii(i_state,i)= delta_mrcepa0_ii(i,i_state) - delta_sub_ii(i,i_state) ! do j = 1, N_det_non_ref ! delta_ij(i_state,j,i) = delta_mrcepa0_ij(i,j,i_state) - delta_sub_ij(i,j,i_state) ! end do ! end do else if(mrmode == 2) then do i = 1, N_det_ref do i_state = 1, N_states delta_ii(i_state,i)= delta_ii_old(i_state,i) delta_ii_s2(i_state,i)= delta_ii_s2_old(i_state,i) enddo do j = 1, N_det_non_ref do i_state = 1, N_states delta_ij(i_state,j,i) = delta_ij_old(i_state,j,i) delta_ij_s2(i_state,j,i) = delta_ij_s2_old(i_state,j,i) enddo end do end do else if(mrmode == 1) then do i = 1, N_det_ref do i_state = 1, N_states delta_ii(i_state,i)= delta_mrcepa0_ii(i,i_state) delta_ii_s2(i_state,i)= delta_mrcepa0_ii_s2(i,i_state) enddo do j = 1, N_det_non_ref do i_state = 1, N_states delta_ij(i_state,j,i) = delta_mrcepa0_ij(i,j,i_state) delta_ij_s2(i_state,j,i) = delta_mrcepa0_ij_s2(i,j,i_state) enddo end do end do else stop "invalid mrmode" end if !if(mrmode == 2 .or. mrmode == 3) then ! do i = 1, N_det_ref ! do i_state = 1, N_states ! delta_ii(i_state,i) += delta_ii_cancel(i_state,i) ! enddo ! do j = 1, N_det_non_ref ! do i_state = 1, N_states ! delta_ij(i_state,j,i) += delta_ij_cancel(i_state,j,i) ! enddo ! end do ! end do !end if END_PROVIDER BEGIN_PROVIDER [ integer, cepa0_shortcut, (0:N_det_non_ref+1) ] &BEGIN_PROVIDER [ integer, det_cepa0_idx, (N_det_non_ref) ] &BEGIN_PROVIDER [ integer(bit_kind), det_cepa0_active, (N_int,2,N_det_non_ref) ] &BEGIN_PROVIDER [ integer(bit_kind), det_ref_active, (N_int,2,N_det_ref) ] &BEGIN_PROVIDER [ integer(bit_kind), active_sorb, (N_int,2) ] &BEGIN_PROVIDER [ integer(bit_kind), det_cepa0, (N_int,2,N_det_non_ref) ] &BEGIN_PROVIDER [ integer, nlink, (N_det_ref) ] &BEGIN_PROVIDER [ integer, linked, (N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ integer, blokMwen, (N_det_non_ref,N_det_ref) ] &BEGIN_PROVIDER [ double precision, searchance, (N_det_ref) ] &BEGIN_PROVIDER [ integer, child_num, (N_det_non_ref,N_det_ref) ] use bitmasks implicit none integer(bit_kind),allocatable :: det_noactive(:,:,:) integer, allocatable :: shortcut(:), idx(:) integer(bit_kind) :: nonactive_sorb(N_int,2), det(N_int, 2) integer i, II, j, k, n, ni, blok, degree logical, external :: detEq allocate(det_noactive(N_int, 2, N_det_non_ref)) allocate(idx(N_det_non_ref), shortcut(0:N_det_non_ref+1)) print *, "pre start" active_sorb(:,:) = 0_8 nonactive_sorb(:,:) = not(0_8) if(N_det_ref > 1) then do i=1, N_det_ref do k=1, N_int active_sorb(k,1) = ior(psi_ref(k,1,i), active_sorb(k,1)) active_sorb(k,2) = ior(psi_ref(k,2,i), active_sorb(k,2)) nonactive_sorb(k,1) = iand(psi_ref(k,1,i), nonactive_sorb(k,1)) nonactive_sorb(k,2) = iand(psi_ref(k,2,i), nonactive_sorb(k,2)) end do end do do k=1, N_int active_sorb(k,1) = iand(active_sorb(k,1), not(nonactive_sorb(k,1))) active_sorb(k,2) = iand(active_sorb(k,2), not(nonactive_sorb(k,2))) end do end if do i=1, N_det_non_ref do k=1, N_int det_noactive(k,1,i) = iand(psi_non_ref(k,1,i), not(active_sorb(k,1))) det_noactive(k,2,i) = iand(psi_non_ref(k,2,i), not(active_sorb(k,2))) end do end do call sort_dets_ab(det_noactive, det_cepa0_idx, cepa0_shortcut, N_det_non_ref, N_int) do i=1,N_det_non_ref det_cepa0(:,:,i) = psi_non_ref(:,:,det_cepa0_idx(i)) end do cepa0_shortcut(0) = 1 cepa0_shortcut(1) = 1 do i=2,N_det_non_ref if(.not. detEq(det_noactive(1,1,i), det_noactive(1,1,i-1), N_int)) then cepa0_shortcut(0) += 1 cepa0_shortcut(cepa0_shortcut(0)) = i end if end do cepa0_shortcut(cepa0_shortcut(0)+1) = N_det_non_ref+1 if(.true.) then do i=1,cepa0_shortcut(0) n = cepa0_shortcut(i+1) - cepa0_shortcut(i) call sort_dets_ab(det_cepa0(1,1,cepa0_shortcut(i)), idx, shortcut, n, N_int) do k=1,n idx(k) = det_cepa0_idx(cepa0_shortcut(i)-1+idx(k)) end do det_cepa0_idx(cepa0_shortcut(i):cepa0_shortcut(i)+n-1) = idx(:n) end do end if do i=1,N_det_ref do k=1, N_int det_ref_active(k,1,i) = iand(psi_ref(k,1,i), active_sorb(k,1)) det_ref_active(k,2,i) = iand(psi_ref(k,2,i), active_sorb(k,2)) end do end do do i=1,N_det_non_ref do k=1, N_int det_cepa0_active(k,1,i) = iand(psi_non_ref(k,1,det_cepa0_idx(i)), active_sorb(k,1)) det_cepa0_active(k,2,i) = iand(psi_non_ref(k,2,det_cepa0_idx(i)), active_sorb(k,2)) end do end do do i=1,N_det_non_ref if(.not. detEq(psi_non_ref(1,1,det_cepa0_idx(i)), det_cepa0(1,1,i),N_int)) stop "STOOOP" end do searchance = 0d0 child_num = 0 do J = 1, N_det_ref nlink(J) = 0 do blok=1,cepa0_shortcut(0) do k=cepa0_shortcut(blok), cepa0_shortcut(blok+1)-1 call get_excitation_degree(psi_ref(1,1,J),det_cepa0(1,1,k),degree,N_int) if(degree <= 2) then nlink(J) += 1 linked(nlink(J),J) = k child_num(k, J) = nlink(J) blokMwen(nlink(J),J) = blok searchance(J) += 1d0 + log(dfloat(cepa0_shortcut(blok+1) - cepa0_shortcut(blok))) end if end do end do end do print *, "pre done" END_PROVIDER ! BEGIN_PROVIDER [ double precision, delta_cas, (N_det_ref, N_det_ref, N_states) ] ! use bitmasks ! implicit none ! integer :: i,j,k ! double precision :: Hjk, Hki, Hij, pre(N_det_ref), wall ! integer :: i_state, degree, npre, ipre(N_det_ref), npres(N_det_ref) ! ! ! provide lambda_mrcc ! npres = 0 ! delta_cas = 0d0 ! call wall_time(wall) ! print *, "dcas ", wall ! do i_state = 1, N_states ! !!$OMP PARALLEL DO default(none) schedule(dynamic) private(pre,npre,ipre,j,k,Hjk,Hki,degree) shared(npres,lambda_mrcc,i_state, N_det_non_ref,psi_ref, psi_non_ref,N_int,delta_cas,N_det_ref) ! do k=1,N_det_non_ref ! if(lambda_mrcc(i_state, k) == 0d0) cycle ! npre = 0 ! do i=1,N_det_ref ! call i_h_j(psi_non_ref(1,1,k),psi_ref(1,1,i), N_int,Hki) ! if(Hki /= 0d0) then ! !!$OMP ATOMIC ! npres(i) += 1 ! npre += 1 ! ipre(npre) = i ! pre(npre) = Hki ! end if ! end do ! ! ! do i=1,npre ! do j=1,i ! !!$OMP ATOMIC ! delta_cas(ipre(i),ipre(j),i_state) += pre(i) * pre(j) * lambda_mrcc(i_state, k) ! end do ! end do ! end do ! !!$OMP END PARALLEL DO ! npre=0 ! do i=1,N_det_ref ! npre += npres(i) ! end do ! !stop ! do i=1,N_det_ref ! do j=1,i ! delta_cas(j,i,i_state) = delta_cas(i,j,i_state) ! end do ! end do ! end do ! ! call wall_time(wall) ! print *, "dcas", wall ! ! stop ! END_PROVIDER BEGIN_PROVIDER [ double precision, delta_cas, (N_det_ref, N_det_ref, N_states) ] &BEGIN_PROVIDER [ double precision, delta_cas_s2, (N_det_ref, N_det_ref, N_states) ] use bitmasks implicit none integer :: i,j,k double precision :: Sjk,Hjk, Hki, Hij !double precision, external :: get_dij integer i_state, degree provide lambda_mrcc dIj do i_state = 1, N_states !$OMP PARALLEL DO default(none) schedule(dynamic) private(j,k,Sjk,Hjk,Hki,degree) shared(lambda_mrcc,i_state, N_det_non_ref,psi_ref, psi_non_ref,N_int,delta_cas,delta_cas_s2,N_det_ref,dij) do i=1,N_det_ref do j=1,i call get_excitation_degree(psi_ref(1,1,i), psi_ref(1,1,j), degree, N_int) delta_cas(i,j,i_state) = 0d0 delta_cas_s2(i,j,i_state) = 0d0 do k=1,N_det_non_ref call i_h_j(psi_ref(1,1,j), psi_non_ref(1,1,k),N_int,Hjk) call get_s2(psi_ref(1,1,j), psi_non_ref(1,1,k),N_int,Sjk) delta_cas(i,j,i_state) += Hjk * dij(i, k, i_state) ! * Hki * lambda_mrcc(i_state, k) delta_cas_s2(i,j,i_state) += Sjk * dij(i, k, i_state) ! * Ski * lambda_mrcc(i_state, k) end do delta_cas(j,i,i_state) = delta_cas(i,j,i_state) delta_cas_s2(j,i,i_state) = delta_cas_s2(i,j,i_state) end do end do !$OMP END PARALLEL DO end do END_PROVIDER logical function isInCassd(a,Nint) use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: a(Nint,2) integer(bit_kind) :: inac, virt integer :: ni, i, deg isInCassd = .false. deg = 0 do i=1,2 do ni=1,Nint virt = iand(not(HF_bitmask(ni,i)), not(active_sorb(ni,i))) deg += popcnt(iand(virt, a(ni,i))) if(deg > 2) return end do end do deg = 0 do i=1,2 do ni=1,Nint inac = iand(HF_bitmask(ni,i), not(active_sorb(ni,i))) deg += popcnt(xor(iand(inac,a(ni,i)), inac)) if(deg > 2) return end do end do isInCassd = .true. end function subroutine getHP(a,h,p,Nint) use bitmasks implicit none integer, intent(in) :: Nint integer(bit_kind), intent(in) :: a(Nint,2) integer, intent(out) :: h, p integer(bit_kind) :: inac, virt integer :: ni, i, deg !isInCassd = .false. h = 0 p = 0 deg = 0 lp : do i=1,2 do ni=1,Nint virt = iand(not(HF_bitmask(ni,i)), not(active_sorb(ni,i))) deg += popcnt(iand(virt, a(ni,i))) if(deg > 2) exit lp end do end do lp p = deg deg = 0 lh : do i=1,2 do ni=1,Nint inac = iand(HF_bitmask(ni,i), not(active_sorb(ni,i))) deg += popcnt(xor(iand(inac,a(ni,i)), inac)) if(deg > 2) exit lh end do end do lh h = deg !isInCassd = .true. end subroutine BEGIN_PROVIDER [ double precision, delta_mrcepa0_ij, (N_det_ref,N_det_non_ref,N_states) ] &BEGIN_PROVIDER [ double precision, delta_mrcepa0_ii, (N_det_ref,N_states) ] &BEGIN_PROVIDER [ double precision, delta_mrcepa0_ij_s2, (N_det_ref,N_det_non_ref,N_states) ] &BEGIN_PROVIDER [ double precision, delta_mrcepa0_ii_s2, (N_det_ref,N_states) ] use bitmasks implicit none integer :: i_state, i, i_I, J, k, degree, degree2, m, l, deg, ni integer :: p1,p2,h1,h2,s1,s2, p1_,p2_,h1_,h2_,s1_,s2_, sortRefIdx(N_det_ref) logical :: ok double precision :: phase_iI, phase_Ik, phase_Jl, phase_IJ, phase_al, diI, hIi, hJi, delta_JI, dkI(1), HkI, ci_inv(1), dia_hla(1) double precision :: contrib, contrib2, contrib_s2, contrib2_s2, HIIi, HJk, wall integer, dimension(0:2,2,2) :: exc_iI, exc_Ik, exc_IJ integer(bit_kind) :: det_tmp(N_int, 2), made_hole(N_int,2), made_particle(N_int,2), myActive(N_int,2) integer(bit_kind),allocatable :: sortRef(:,:,:) integer, allocatable :: idx_sorted_bit(:) integer, external :: get_index_in_psi_det_sorted_bit, searchDet logical, external :: is_in_wavefunction, detEq !double precision, external :: get_dij integer :: II, blok integer*8, save :: notf = 0 call wall_time(wall) allocate(idx_sorted_bit(N_det), sortRef(N_int,2,N_det_ref)) sortRef(:,:,:) = det_ref_active(:,:,:) call sort_det(sortRef, sortRefIdx, N_det_ref, N_int) idx_sorted_bit(:) = -1 do i=1,N_det_non_ref idx_sorted_bit(get_index_in_psi_det_sorted_bit(psi_non_ref(1,1,i), N_int)) = i enddo ! To provide everything contrib = dij(1, 1, 1) delta_mrcepa0_ii(:,:) = 0d0 delta_mrcepa0_ij(:,:,:) = 0d0 delta_mrcepa0_ii_s2(:,:) = 0d0 delta_mrcepa0_ij_s2(:,:,:) = 0d0 do i_state = 1, N_states !$OMP PARALLEL DO default(none) schedule(dynamic) shared(delta_mrcepa0_ij, delta_mrcepa0_ii, delta_mrcepa0_ij_s2, delta_mrcepa0_ii_s2) & !$OMP private(m,i,II,J,k,degree,myActive,made_hole,made_particle,hjk,contrib,contrib2,contrib_s2,contrib2_s2) & !$OMP shared(active_sorb, psi_non_ref, psi_non_ref_coef, psi_ref, psi_ref_coef, cepa0_shortcut, det_cepa0_active) & !$OMP shared(N_det_ref, N_det_non_ref,N_int,det_cepa0_idx,lambda_mrcc,det_ref_active, delta_cas, delta_cas_s2) & !$OMP shared(notf,i_state, sortRef, sortRefIdx, dij) do blok=1,cepa0_shortcut(0) do i=cepa0_shortcut(blok), cepa0_shortcut(blok+1)-1 do II=1,N_det_ref call get_excitation_degree(psi_ref(1,1,II),psi_non_ref(1,1,det_cepa0_idx(i)),degree,N_int) if (degree > 2 ) cycle do ni=1,N_int made_hole(ni,1) = iand(det_ref_active(ni,1,II), xor(det_cepa0_active(ni,1,i), det_ref_active(ni,1,II))) made_hole(ni,2) = iand(det_ref_active(ni,2,II), xor(det_cepa0_active(ni,2,i), det_ref_active(ni,2,II))) made_particle(ni,1) = iand(det_cepa0_active(ni,1,i), xor(det_cepa0_active(ni,1,i), det_ref_active(ni,1,II))) made_particle(ni,2) = iand(det_cepa0_active(ni,2,i), xor(det_cepa0_active(ni,2,i), det_ref_active(ni,2,II))) end do kloop: do k=cepa0_shortcut(blok), cepa0_shortcut(blok+1)-1 !i !if(lambda_mrcc(i_state, det_cepa0_idx(k)) == 0d0) cycle do ni=1,N_int if(iand(made_hole(ni,1), det_cepa0_active(ni,1,k)) /= 0) cycle kloop if(iand(made_particle(ni,1), det_cepa0_active(ni,1,k)) /= made_particle(ni,1)) cycle kloop if(iand(made_hole(ni,2), det_cepa0_active(ni,2,k)) /= 0) cycle kloop if(iand(made_particle(ni,2), det_cepa0_active(ni,2,k)) /= made_particle(ni,2)) cycle kloop end do do ni=1,N_int myActive(ni,1) = xor(det_cepa0_active(ni,1,k), made_hole(ni,1)) myActive(ni,1) = xor(myActive(ni,1), made_particle(ni,1)) myActive(ni,2) = xor(det_cepa0_active(ni,2,k), made_hole(ni,2)) myActive(ni,2) = xor(myActive(ni,2), made_particle(ni,2)) end do j = searchDet(sortRef, myActive, N_det_ref, N_int) if(j == -1) then cycle end if j = sortRefIdx(j) !$OMP ATOMIC notf = notf+1 ! call i_h_j(psi_non_ref(1,1,det_cepa0_idx(k)),psi_ref(1,1,J),N_int,HJk) contrib = delta_cas(II, J, i_state)* dij(J, det_cepa0_idx(k), i_state) contrib_s2 = delta_cas_s2(II, J, i_state) * dij(J, det_cepa0_idx(k), i_state) if(dabs(psi_ref_coef(J,i_state)).ge.1.d-3) then contrib2 = contrib / psi_ref_coef(J, i_state) * psi_non_ref_coef(det_cepa0_idx(i),i_state) contrib2_s2 = contrib_s2 / psi_ref_coef(J, i_state) * psi_non_ref_coef(det_cepa0_idx(i),i_state) !$OMP ATOMIC delta_mrcepa0_ii(J,i_state) -= contrib2 delta_mrcepa0_ii_s2(J,i_state) -= contrib2_s2 else contrib = contrib * 0.5d0 contrib_s2 = contrib_s2 * 0.5d0 end if !$OMP ATOMIC delta_mrcepa0_ij(J, det_cepa0_idx(i), i_state) += contrib delta_mrcepa0_ij_s2(J, det_cepa0_idx(i), i_state) += contrib_s2 end do kloop end do end do end do !$OMP END PARALLEL DO end do deallocate(idx_sorted_bit) call wall_time(wall) print *, "cepa0", wall, notf END_PROVIDER BEGIN_PROVIDER [ double precision, delta_sub_ij, (N_det_ref,N_det_non_ref,N_states) ] &BEGIN_PROVIDER [ double precision, delta_sub_ii, (N_det_ref, N_states) ] use bitmasks implicit none integer :: i_state, i, i_I, J, k, degree, degree2, l, deg, ni integer :: p1,p2,h1,h2,s1,s2, p1_,p2_,h1_,h2_,s1_,s2_ logical :: ok double precision :: phase_Ji, phase_Ik, phase_Ii double precision :: contrib, contrib2, delta_IJk, HJk, HIk, HIl integer, dimension(0:2,2,2) :: exc_Ik, exc_Ji, exc_Ii integer(bit_kind) :: det_tmp(N_int, 2), det_tmp2(N_int, 2) integer, allocatable :: idx_sorted_bit(:) integer, external :: get_index_in_psi_det_sorted_bit integer :: II, blok provide delta_cas lambda_mrcc allocate(idx_sorted_bit(N_det)) idx_sorted_bit(:) = -1 do i=1,N_det_non_ref idx_sorted_bit(get_index_in_psi_det_sorted_bit(psi_non_ref(1,1,i), N_int)) = i enddo do i_state = 1, N_states delta_sub_ij(:,:,:) = 0d0 delta_sub_ii(:,:) = 0d0 provide mo_bielec_integrals_in_map !$OMP PARALLEL DO default(none) schedule(dynamic,10) shared(delta_sub_ij, delta_sub_ii) & !$OMP private(i, J, k, degree, degree2, l, deg, ni) & !$OMP private(p1,p2,h1,h2,s1,s2, p1_,p2_,h1_,h2_,s1_,s2_) & !$OMP private(ok, phase_Ji, phase_Ik, phase_Ii, contrib2, contrib, delta_IJk, HJk, HIk, HIl, exc_Ik, exc_Ji, exc_Ii) & !$OMP private(det_tmp, det_tmp2, II, blok) & !$OMP shared(idx_sorted_bit, N_det_non_ref, N_det_ref, N_int, psi_non_ref, psi_non_ref_coef, psi_ref, psi_ref_coef) & !$OMP shared(i_state,lambda_mrcc, hf_bitmask, active_sorb) do i=1,N_det_non_ref if(mod(i,1000) == 0) print *, i, "/", N_det_non_ref do J=1,N_det_ref call get_excitation(psi_ref(1,1,J),psi_non_ref(1,1,i),exc_Ji,degree,phase_Ji,N_int) if(degree == -1) cycle do II=1,N_det_ref call apply_excitation(psi_ref(1,1,II),exc_Ji,det_tmp,ok,N_int) if(.not. ok) cycle l = get_index_in_psi_det_sorted_bit(det_tmp, N_int) if(l == 0) cycle l = idx_sorted_bit(l) call i_h_j(psi_ref(1,1,II), det_tmp, N_int, HIl) do k=1,N_det_non_ref if(lambda_mrcc(i_state, k) == 0d0) cycle call get_excitation(psi_ref(1,1,II),psi_non_ref(1,1,k),exc_Ik,degree2,phase_Ik,N_int) det_tmp(:,:) = 0_bit_kind det_tmp2(:,:) = 0_bit_kind ok = .true. do ni=1,N_int det_tmp(ni,1) = iand(xor(HF_bitmask(ni,1), psi_non_ref(ni,1,k)), not(active_sorb(ni,1))) det_tmp(ni,2) = iand(xor(HF_bitmask(ni,1), psi_non_ref(ni,1,i)), not(active_sorb(ni,1))) ok = ok .and. (popcnt(det_tmp(ni,1)) + popcnt(det_tmp(ni,2)) == popcnt(xor(det_tmp(ni,1), det_tmp(ni,2)))) det_tmp(ni,1) = iand(xor(HF_bitmask(ni,2), psi_non_ref(ni,2,k)), not(active_sorb(ni,2))) det_tmp(ni,2) = iand(xor(HF_bitmask(ni,2), psi_non_ref(ni,2,i)), not(active_sorb(ni,2))) ok = ok .and. (popcnt(det_tmp(ni,1)) + popcnt(det_tmp(ni,2)) == popcnt(xor(det_tmp(ni,1), det_tmp(ni,2)))) end do if(ok) cycle call i_h_j(psi_ref(1,1,J), psi_non_ref(1,1,k), N_int, HJk) call i_h_j(psi_ref(1,1,II), psi_non_ref(1,1,k), N_int, HIk) if(HJk == 0) cycle !assert HIk == 0 delta_IJk = HJk * HIk * lambda_mrcc(i_state, k) call apply_excitation(psi_non_ref(1,1,i),exc_Ik,det_tmp,ok,N_int) if(ok) cycle contrib = delta_IJk * HIl * lambda_mrcc(i_state,l) if(dabs(psi_ref_coef(II,i_state)).ge.1.d-3) then contrib2 = contrib / psi_ref_coef(II, i_state) * psi_non_ref_coef(l,i_state) !$OMP ATOMIC delta_sub_ii(II,i_state) -= contrib2 else contrib = contrib * 0.5d0 endif !$OMP ATOMIC delta_sub_ij(II, i, i_state) += contrib end do end do end do end do !$OMP END PARALLEL DO end do deallocate(idx_sorted_bit) END_PROVIDER subroutine set_det_bit(det, p, s) implicit none integer(bit_kind),intent(inout) :: det(N_int, 2) integer, intent(in) :: p, s integer :: ni, pos ni = (p-1)/bit_kind_size + 1 pos = mod(p-1, bit_kind_size) det(ni,s) = ibset(det(ni,s), pos) end subroutine BEGIN_PROVIDER [ double precision, h_cache, (N_det_ref,N_det_non_ref) ] &BEGIN_PROVIDER [ double precision, s2_cache, (N_det_ref,N_det_non_ref) ] implicit none integer :: i,j do i=1,N_det_ref do j=1,N_det_non_ref call i_h_j(psi_ref(1,1,i), psi_non_ref(1,1,j), N_int, h_cache(i,j)) call get_s2(psi_ref(1,1,i), psi_non_ref(1,1,j), N_int, s2_cache(i,j)) end do end do END_PROVIDER subroutine filter_tq(i_generator,n_selected,det_buffer,Nint,tq,N_tq,miniList,N_miniList) use bitmasks implicit none integer, intent(in) :: i_generator,n_selected, Nint integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) integer :: i,j,k,m logical :: is_in_wavefunction integer,allocatable :: degree(:) integer,allocatable :: idx(:) logical :: good integer(bit_kind), intent(inout) :: tq(Nint,2,n_selected) !! intent(out) integer, intent(out) :: N_tq integer :: nt,ni logical, external :: is_connected_to, is_generable integer(bit_kind),intent(in) :: miniList(Nint,2,N_det_generators) integer,intent(in) :: N_miniList allocate(degree(psi_det_size)) allocate(idx(0:psi_det_size)) N_tq = 0 i_loop : do i=1,N_selected do k=1, N_minilist if(is_generable(miniList(1,1,k), det_buffer(1,1,i), Nint)) cycle i_loop end do ! Select determinants that are triple or quadruple excitations ! from the ref good = .True. call get_excitation_degree_vector(psi_ref,det_buffer(1,1,i),degree,Nint,N_det_ref,idx) !good=(idx(0) == 0) tant que degree > 2 pas retourné par get_excitation_degree_vector do k=1,idx(0) if (degree(k) < 3) then good = .False. exit endif enddo if (good) then if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint)) then N_tq += 1 do k=1,N_int tq(k,1,N_tq) = det_buffer(k,1,i) tq(k,2,N_tq) = det_buffer(k,2,i) enddo endif endif enddo i_loop end subroutine filter_tq_micro(i_generator,n_selected,det_buffer,Nint,tq,N_tq,microlist,ptr_microlist,N_microlist,key_mask) use bitmasks implicit none integer, intent(in) :: i_generator,n_selected, Nint integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) integer :: i,j,k,m logical :: is_in_wavefunction integer,allocatable :: degree(:) integer,allocatable :: idx(:) logical :: good integer(bit_kind), intent(inout) :: tq(Nint,2,n_selected) !! intent(out) integer, intent(out) :: N_tq integer :: nt,ni logical, external :: is_connected_to, is_generable integer(bit_kind),intent(in) :: microlist(Nint,2,*) integer,intent(in) :: ptr_microlist(0:*) integer,intent(in) :: N_microlist(0:*) integer(bit_kind),intent(in) :: key_mask(Nint, 2) integer :: mobiles(2), smallerlist allocate(degree(psi_det_size)) allocate(idx(0:psi_det_size)) N_tq = 0 i_loop : do i=1,N_selected call getMobiles(det_buffer(1,1,i), key_mask, mobiles, Nint) if(N_microlist(mobiles(1)) < N_microlist(mobiles(2))) then smallerlist = mobiles(1) else smallerlist = mobiles(2) end if if(N_microlist(smallerlist) > 0) then do k=ptr_microlist(smallerlist), ptr_microlist(smallerlist)+N_microlist(smallerlist)-1 if(is_generable(microlist(1,1,k), det_buffer(1,1,i), Nint)) cycle i_loop end do end if if(N_microlist(0) > 0) then do k=1, N_microlist(0) if(is_generable(microlist(1,1,k), det_buffer(1,1,i), Nint)) cycle i_loop end do end if ! Select determinants that are triple or quadruple excitations ! from the ref good = .True. call get_excitation_degree_vector(psi_ref,det_buffer(1,1,i),degree,Nint,N_det_ref,idx) !good=(idx(0) == 0) tant que degree > 2 pas retourné par get_excitation_degree_vector do k=1,idx(0) if (degree(k) < 3) then good = .False. exit endif enddo if (good) then if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint)) then N_tq += 1 do k=1,N_int tq(k,1,N_tq) = det_buffer(k,1,i) tq(k,2,N_tq) = det_buffer(k,2,i) enddo endif endif enddo i_loop end