BEGIN_PROVIDER [ double precision, ao_nucl_elec_integral, (ao_num_align,ao_num)] BEGIN_DOC ! interaction nuclear electron END_DOC implicit none double precision :: alpha, beta, gama, delta integer :: num_A,num_B double precision :: A_center(3),B_center(3),C_center(3) integer :: power_A(3),power_B(3) integer :: i,j,k,l,n_pt_in,m double precision ::overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult ao_nucl_elec_integral = 0.d0 ! _ ! /| / |_) ! | / | \ ! !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B, & !$OMP num_A,num_B,Z,c,n_pt_in) & !$OMP SHARED (ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,nucl_coord,ao_coef_normalized_ordered_transp, & !$OMP n_pt_max_integrals,ao_nucl_elec_integral,nucl_num,nucl_charge) n_pt_in = n_pt_max_integrals !$OMP DO SCHEDULE (dynamic) do j = 1, ao_num num_A = ao_nucl(j) power_A(1:3)= ao_power(j,1:3) A_center(1:3) = nucl_coord(num_A,1:3) do i = 1, ao_num num_B = ao_nucl(i) power_B(1:3)= ao_power(i,1:3) B_center(1:3) = nucl_coord(num_B,1:3) do l=1,ao_prim_num(j) alpha = ao_expo_ordered_transp(l,j) do m=1,ao_prim_num(i) beta = ao_expo_ordered_transp(m,i) double precision :: c c = 0.d0 do k = 1, nucl_num double precision :: Z Z = nucl_charge(k) C_center(1:3) = nucl_coord(k,1:3) c = c - Z*NAI_pol_mult(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in) enddo ao_nucl_elec_integral(i,j) = ao_nucl_elec_integral(i,j) + & ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i)*c enddo enddo enddo enddo !$OMP END DO !$OMP END PARALLEL END_PROVIDER BEGIN_PROVIDER [ double precision, ao_nucl_elec_integral_per_atom, (ao_num_align,ao_num,nucl_num)] BEGIN_DOC ! ao_nucl_elec_integral_per_atom(i,j,k) = - ! where Rk is the geometry of the kth atom END_DOC implicit none double precision :: alpha, beta, gama, delta integer :: i_c,num_A,num_B double precision :: A_center(3),B_center(3),C_center(3) integer :: power_A(3),power_B(3) integer :: i,j,k,l,n_pt_in,m double precision ::overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult ao_nucl_elec_integral_per_atom = 0.d0 !$OMP PARALLEL & !$OMP DEFAULT (NONE) & !$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,power_A,power_B, & !$OMP num_A,num_B,c,n_pt_in,C_center) & !$OMP SHARED (ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,nucl_coord,ao_coef_normalized_ordered_transp, & !$OMP n_pt_max_integrals,ao_nucl_elec_integral_per_atom,nucl_num) n_pt_in = n_pt_max_integrals !$OMP DO SCHEDULE (dynamic) double precision :: c do j = 1, ao_num power_A(1)= ao_power(j,1) power_A(2)= ao_power(j,2) power_A(3)= ao_power(j,3) num_A = ao_nucl(j) A_center(1) = nucl_coord(num_A,1) A_center(2) = nucl_coord(num_A,2) A_center(3) = nucl_coord(num_A,3) do k = 1, nucl_num C_center(1) = nucl_coord(k,1) C_center(2) = nucl_coord(k,2) C_center(3) = nucl_coord(k,3) do i = 1, ao_num power_B(1)= ao_power(i,1) power_B(2)= ao_power(i,2) power_B(3)= ao_power(i,3) num_B = ao_nucl(i) B_center(1) = nucl_coord(num_B,1) B_center(2) = nucl_coord(num_B,2) B_center(3) = nucl_coord(num_B,3) c = 0.d0 do l=1,ao_prim_num(j) alpha = ao_expo_ordered_transp(l,j) do m=1,ao_prim_num(i) beta = ao_expo_ordered_transp(m,i) c = c + NAI_pol_mult(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in) & * ao_coef_normalized_ordered_transp(l,j)*ao_coef_normalized_ordered_transp(m,i) enddo enddo ao_nucl_elec_integral_per_atom(i,j,k) = -c enddo enddo enddo !$OMP END DO !$OMP END PARALLEL END_PROVIDER double precision function NAI_pol_mult(A_center,B_center,power_A,power_B,alpha,beta,C_center,n_pt_in) ! function that calculate the folowing integral : ! int{dr} of (x-A_x)^ax (x-B_X)^bx exp(-alpha (x-A_x)^2 - beta (x-B_x)^2 ) 1/(r-R_c) implicit none integer, intent(in) :: n_pt_in double precision,intent(in) :: C_center(3),A_center(3),B_center(3),alpha,beta integer :: power_A(3),power_B(3) integer :: i,j,k,l,n_pt double precision :: P_center(3) double precision :: d(0:n_pt_in),pouet,coeff,rho,dist,const,pouet_2,p,p_inv,factor double precision :: I_n_special_exact,integrate_bourrin,I_n_bibi double precision :: V_e_n,const_factor,dist_integral,tmp double precision :: accu,epsilo,rint integer :: n_pt_out,lmax include 'Utils/constants.include.F' if ( (A_center(1)/=B_center(1)).or. & (A_center(2)/=B_center(2)).or. & (A_center(3)/=B_center(3)).or. & (A_center(1)/=C_center(1)).or. & (A_center(2)/=C_center(2)).or. & (A_center(3)/=C_center(3))) then continue else NAI_pol_mult = V_e_n(power_A(1),power_A(2),power_A(3),power_B(1),power_B(2),power_B(3),alpha,beta) return endif p = alpha + beta ! print*, "a" p_inv = 1.d0/p rho = alpha * beta * p_inv dist = 0.d0 dist_integral = 0.d0 do i = 1, 3 P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv dist += (A_center(i) - B_center(i))*(A_center(i) - B_center(i)) dist_integral += (P_center(i) - C_center(i))*(P_center(i) - C_center(i)) enddo const_factor = dist*rho const = p * dist_integral if(const_factor > 80.d0)then NAI_pol_mult = 0.d0 return endif factor = dexp(-const_factor) coeff = dtwo_pi * factor * p_inv lmax = 20 ! print*, "b" do i = 0, n_pt_in d(i) = 0.d0 enddo n_pt = 2 * ( (power_A(1) + power_B(1)) +(power_A(2) + power_B(2)) +(power_A(3) + power_B(3)) ) if (n_pt == 0) then epsilo = 1.d0 pouet = rint(0,const) NAI_pol_mult = coeff * pouet return endif call give_polynom_mult_center_mono_elec(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out) if(n_pt_out<0)then NAI_pol_mult = 0.d0 return endif accu = 0.d0 ! 1/r1 standard attraction integral epsilo = 1.d0 ! sum of integrals of type : int {t,[0,1]} exp-(rho.(P-Q)^2 * t^2) * t^i do i =0 ,n_pt_out,2 accu += d(i) * rint(i/2,const) enddo NAI_pol_mult = accu * coeff end subroutine give_polynom_mult_center_mono_elec(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out) !!!! subroutine that returns the explicit polynom in term of the "t" variable of the following polynomw :: !!!! I_x1(a_x, d_x,p,q) * I_x1(a_y, d_y,p,q) * I_x1(a_z, d_z,p,q) !!!! it is for the nuclear electron atraction implicit none integer, intent(in) :: n_pt_in integer,intent(out) :: n_pt_out double precision, intent(in) :: A_center(3), B_center(3),C_center(3) double precision, intent(in) :: alpha,beta integer, intent(in) :: power_A(3), power_B(3) integer :: a_x,b_x,a_y,b_y,a_z,b_z double precision :: d(0:n_pt_in) double precision :: d1(0:n_pt_in) double precision :: d2(0:n_pt_in) double precision :: d3(0:n_pt_in) double precision :: accu, pq_inv, p10_1, p10_2, p01_1, p01_2 double precision :: p,P_center(3),rho,p_inv,p_inv_2 !print*,'n_pt_in = ',n_pt_in accu = 0.d0 !COMPTEUR irp_rdtsc1 = irp_rdtsc() ASSERT (n_pt_in > 1) p = alpha+beta p_inv = 1.d0/p p_inv_2 = 0.5d0/p do i =1, 3 P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv enddo ! print*,'passed the P_center' double precision :: R1x(0:2), B01(0:2), R1xp(0:2),R2x(0:2) R1x(0) = (P_center(1) - A_center(1)) R1x(1) = 0.d0 R1x(2) = -(P_center(1) - C_center(1)) ! R1x = (P_x - A_x) - (P_x - C_x) t^2 R1xp(0) = (P_center(1) - B_center(1)) R1xp(1) = 0.d0 R1xp(2) =-(P_center(1) - C_center(1)) !R1xp = (P_x - B_x) - (P_x - C_x) t^2 R2x(0) = p_inv_2 R2x(1) = 0.d0 R2x(2) = -p_inv_2 !R2x = 0.5 / p - 0.5/p t^2 do i = 0,n_pt_in d(i) = 0.d0 enddo do i = 0,n_pt_in d1(i) = 0.d0 enddo do i = 0,n_pt_in d2(i) = 0.d0 enddo do i = 0,n_pt_in d3(i) = 0.d0 enddo integer :: n_pt1,n_pt2,n_pt3,dim,i n_pt1 = n_pt_in n_pt2 = n_pt_in n_pt3 = n_pt_in a_x = power_A(1) b_x = power_B(1) call I_x1_pol_mult_mono_elec(a_x,b_x,R1x,R1xp,R2x,d1,n_pt1,n_pt_in) ! print*,'passed the first I_x1' if(n_pt1<0)then n_pt_out = -1 do i = 0,n_pt_in d(i) = 0.d0 enddo return endif R1x(0) = (P_center(2) - A_center(2)) R1x(1) = 0.d0 R1x(2) = -(P_center(2) - C_center(2)) ! R1x = (P_x - A_x) - (P_x - C_x) t^2 R1xp(0) = (P_center(2) - B_center(2)) R1xp(1) = 0.d0 R1xp(2) =-(P_center(2) - C_center(2)) !R1xp = (P_x - B_x) - (P_x - C_x) t^2 a_y = power_A(2) b_y = power_B(2) call I_x1_pol_mult_mono_elec(a_y,b_y,R1x,R1xp,R2x,d2,n_pt2,n_pt_in) ! print*,'passed the second I_x1' if(n_pt2<0)then n_pt_out = -1 do i = 0,n_pt_in d(i) = 0.d0 enddo return endif R1x(0) = (P_center(3) - A_center(3)) R1x(1) = 0.d0 R1x(2) = -(P_center(3) - C_center(3)) ! R1x = (P_x - A_x) - (P_x - C_x) t^2 R1xp(0) = (P_center(3) - B_center(3)) R1xp(1) = 0.d0 R1xp(2) =-(P_center(3) - C_center(3)) !R2x = 0.5 / p - 0.5/p t^2 a_z = power_A(3) b_z = power_B(3) ! print*,'a_z = ',a_z ! print*,'b_z = ',b_z call I_x1_pol_mult_mono_elec(a_z,b_z,R1x,R1xp,R2x,d3,n_pt3,n_pt_in) ! print*,'passed the third I_x1' if(n_pt3<0)then n_pt_out = -1 do i = 0,n_pt_in d(i) = 0.d0 enddo return endif integer :: n_pt_tmp n_pt_tmp = 0 call multiply_poly(d1,n_pt1,d2,n_pt2,d,n_pt_tmp) do i = 0,n_pt_tmp d1(i) = 0.d0 enddo n_pt_out = 0 call multiply_poly(d ,n_pt_tmp ,d3,n_pt3,d1,n_pt_out) do i = 0, n_pt_out d(i) = d1(i) enddo end recursive subroutine I_x1_pol_mult_mono_elec(a,c,R1x,R1xp,R2x,d,nd,n_pt_in) !!!! recursive function involved in the electron nucleus potential implicit none integer , intent(in) :: n_pt_in double precision,intent(inout) :: d(0:n_pt_in) integer,intent(inout) :: nd integer, intent(in):: a,c double precision, intent(in) :: R1x(0:2),R1xp(0:2),R2x(0:2) include 'Utils/constants.include.F' double precision :: X(0:max_dim) double precision :: Y(0:max_dim) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X, Y integer :: nx, ix,dim,iy,ny dim = n_pt_in ! print*,'a,c = ',a,c ! print*,'nd_in = ',nd if( (a==0) .and. (c==0))then nd = 0 d(0) = 1.d0 return elseif( (c<0).or.(nd<0) )then nd = -1 return else if ((a==0).and.(c.ne.0)) then call I_x2_pol_mult_mono_elec(c,R1x,R1xp,R2x,d,nd,n_pt_in) ! print*,'nd 0,c',nd else if (a==1) then nx = nd do ix=0,n_pt_in X(ix) = 0.d0 Y(ix) = 0.d0 enddo call I_x2_pol_mult_mono_elec(c-1,R1x,R1xp,R2x,X,nx,n_pt_in) do ix=0,nx X(ix) *= dble(c) enddo call multiply_poly(X,nx,R2x,2,d,nd) ny=0 call I_x2_pol_mult_mono_elec(c,R1x,R1xp,R2x,Y,ny,n_pt_in) call multiply_poly(Y,ny,R1x,2,d,nd) else do ix=0,n_pt_in X(ix) = 0.d0 Y(ix) = 0.d0 enddo nx = 0 call I_x1_pol_mult_mono_elec(a-2,c,R1x,R1xp,R2x,X,nx,n_pt_in) ! print*,'nx a-2,c= ',nx do ix=0,nx X(ix) *= dble(a-1) enddo call multiply_poly(X,nx,R2x,2,d,nd) ! print*,'nd out = ',nd nx = nd do ix=0,n_pt_in X(ix) = 0.d0 enddo call I_x1_pol_mult_mono_elec(a-1,c-1,R1x,R1xp,R2x,X,nx,n_pt_in) ! print*,'nx a-1,c-1 = ',nx do ix=0,nx X(ix) *= dble(c) enddo call multiply_poly(X,nx,R2x,2,d,nd) ny=0 call I_x1_pol_mult_mono_elec(a-1,c,R1x,R1xp,R2x,Y,ny,n_pt_in) call multiply_poly(Y,ny,R1x,2,d,nd) endif end recursive subroutine I_x2_pol_mult_mono_elec(c,R1x,R1xp,R2x,d,nd,dim) implicit none integer , intent(in) :: dim include 'Utils/constants.include.F' double precision :: d(0:max_dim) integer,intent(inout) :: nd integer, intent(in):: c double precision, intent(in) :: R1x(0:2),R1xp(0:2),R2x(0:2) integer :: i !print*,'X2,c = ',c !print*,'nd_in = ',nd if(c==0) then nd = 0 d(0) = 1.d0 ! print*,'nd IX2 = ',nd return elseif ((nd<0).or.(c<0))then nd = -1 return else integer :: nx, ix,ny double precision :: X(0:max_dim),Y(0:max_dim) !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: X, Y do ix=0,dim X(ix) = 0.d0 Y(ix) = 0.d0 enddo nx = 0 call I_x1_pol_mult_mono_elec(0,c-2,R1x,R1xp,R2x,X,nx,dim) ! print*,'nx 0,c-2 = ',nx do ix=0,nx X(ix) *= dble(c-1) enddo call multiply_poly(X,nx,R2x,2,d,nd) ! print*,'nd = ',nd ny = 0 do ix=0,dim Y(ix) = 0.d0 enddo call I_x1_pol_mult_mono_elec(0,c-1,R1x,R1xp,R2x,Y,ny,dim) ! print*,'ny = ',ny ! do ix=0,ny ! print*,'Y(ix) = ',Y(ix) ! enddo if(ny.ge.0)then call multiply_poly(Y,ny,R1xp,2,d,nd) endif endif end double precision function V_e_n(a_x,a_y,a_z,b_x,b_y,b_z,alpha,beta) implicit none !!! primitve nuclear attraction between the two primitves centered on the same atom :: !!!! primitive_1 = x**(a_x) y**(a_y) z**(a_z) exp(-alpha * r**2) !!!! primitive_2 = x**(b_x) y**(b_y) z**(b_z) exp(- beta * r**2) integer :: a_x,a_y,a_z,b_x,b_y,b_z double precision :: alpha,beta double precision :: V_r, V_phi, V_theta if(iand((a_x+b_x),1)==1.or.iand(a_y+b_y,1)==1.or.iand((a_z+b_z),1)==1)then V_e_n = 0.d0 else V_e_n = V_r(a_x+b_x+a_y+b_y+a_z+b_z+1,alpha+beta) & & * V_phi(a_x+b_x,a_y+b_y) & & * V_theta(a_z+b_z,a_x+b_x+a_y+b_y+1) endif end double precision function int_gaus_pol(alpha,n) !!!! calculate the integral of !! integral on "x" with boundaries (- infinity; + infinity) of [ x**n exp(-alpha * x**2) ] implicit none double precision :: alpha integer :: n double precision :: dble_fact include 'Utils/constants.include.F' !if(iand(n,1).eq.1)then ! int_gaus_pol= 0.d0 !else ! int_gaus_pol = dsqrt(pi/alpha) * dble_fact(n -1)/(alpha+alpha)**(n/2) !endif int_gaus_pol = 0.d0 if(iand(n,1).eq.0)then int_gaus_pol = dsqrt(alpha/pi) double precision :: two_alpha two_alpha = alpha+alpha integer :: i do i=1,n,2 int_gaus_pol = int_gaus_pol * two_alpha enddo int_gaus_pol = dble_fact(n -1) / int_gaus_pol endif end double precision function V_r(n,alpha) !!!! calculate the radial part of the nuclear attraction integral which is the following integral : !! integral on "r" with boundaries ( 0 ; + infinity) of [ r**n exp(-alpha * r**2) ] !!! CAUTION :: this function requires the constant sqpi = dsqrt(pi) implicit none double precision :: alpha, fact integer :: n include 'Utils/constants.include.F' if(iand(n,1).eq.1)then V_r = 0.5d0 * fact(ishft(n,-1)) / (alpha ** (ishft(n,-1) + 1)) else V_r = sqpi * fact(n) / fact(ishft(n,-1)) * (0.5d0/sqrt(alpha)) ** (n+1) endif end double precision function V_phi(n,m) implicit none !!!! calculate the angular "phi" part of the nuclear attraction integral wich is the following integral : !! integral on "phi" with boundaries ( 0 ; 2 pi) of [ cos(phi) **n sin(phi) **m ] integer :: n,m, i double precision :: prod, Wallis prod = 1.d0 do i = 0,ishft(n,-1)-1 prod = prod/ (1.d0 + dfloat(m+1)/dfloat(n-i-i-1)) enddo V_phi = 4.d0 * prod * Wallis(m) end double precision function V_theta(n,m) implicit none !!!! calculate the angular "theta" part of the nuclear attraction integral wich is the following integral : !! integral on "theta" with boundaries ( 0 ; pi) of [ cos(theta) **n sin(theta) **m ] integer :: n,m,i double precision :: Wallis, prod include 'Utils/constants.include.F' V_theta = 0.d0 prod = 1.d0 do i = 0,ishft(n,-1)-1 prod = prod / (1.d0 + dfloat(m+1)/dfloat(n-i-i-1)) enddo V_theta = (prod+prod) * Wallis(m) end double precision function Wallis(n) !!!! calculate the Wallis integral : !! integral on "theta" with boundaries ( 0 ; pi/2) of [ cos(theta) **n ] implicit none double precision :: fact integer :: n,p include 'Utils/constants.include.F' if(iand(n,1).eq.0)then Wallis = fact(ishft(n,-1)) Wallis = pi * fact(n) / (dble(ibset(0_8,n)) * (Wallis+Wallis)*Wallis) else p = ishft(n,-1) Wallis = fact(p) Wallis = dble(ibset(0_8,p+p)) * Wallis*Wallis / fact(p+p+1) endif end