subroutine mrcc_dress(ndetref,ndetnonref,nstates,delta_ij_,delta_ii_) use bitmasks implicit none integer, intent(in) :: ndetref,nstates,ndetnonref double precision, intent(inout) :: delta_ii_(ndetref,nstates),delta_ij_(ndetref,ndetnonref,nstates) integer :: i,j,k,l,m integer :: i_state integer :: N_connect_ref integer*2,allocatable :: excitation_operators(:,:) double precision, allocatable :: amplitudes_phase_less(:) double precision, allocatable :: coef_test(:) integer(bit_kind), allocatable :: key_test(:,:) integer, allocatable :: index_connected(:) integer :: i_hole,i_particle,ispin,i_ok,connected_to_ref,index_wf integer, allocatable :: idx_vector(:) double precision :: phase_ij double precision :: dij,phase_la double precision :: hij,phase integer :: exc(0:2,2,2),degree logical :: is_in_wavefunction double precision, allocatable :: delta_ij_tmp(:,:,:), delta_ii_tmp(:,:) logical, external :: is_in_psi_ref i_state = 1 allocate(excitation_operators(5,N_det_non_ref)) allocate(amplitudes_phase_less(N_det_non_ref)) allocate(index_connected(N_det_non_ref)) !$OMP PARALLEL DEFAULT(NONE) & !$OMP SHARED(N_det_ref, N_det_non_ref, psi_ref, i_state, & !$OMP N_connect_ref,index_connected,psi_non_ref, & !$OMP excitation_operators,amplitudes_phase_less, & !$OMP psi_non_ref_coef,N_int,lambda_mrcc, & !$OMP delta_ii_,delta_ij_,psi_ref_coef,nstates, & !$OMP mo_integrals_threshold,idx_non_ref_rev) & !$OMP PRIVATE(i,j,k,l,hil,phase_il,exc,degree,t_il, & !$OMP key_test,i_ok,phase_la,hij,phase_ij,m, & !$OMP dij,idx_vector,delta_ij_tmp, & !$OMP delta_ii_tmp,phase) allocate(idx_vector(0:N_det_non_ref)) allocate(key_test(N_int,2)) allocate(delta_ij_tmp(size(delta_ij_,1),size(delta_ij_,2),nstates)) allocate(delta_ii_tmp(size(delta_ij_,1),nstates)) delta_ij_tmp = 0.d0 delta_ii_tmp = 0.d0 do i = 1, N_det_ref !$OMP SINGLE call get_excitation_operators_for_one_ref(psi_ref(1,1,i),i_state,N_det_non_ref,N_connect_ref,excitation_operators,amplitudes_phase_less,index_connected) print*,'N_connect_ref =',N_connect_ref print*,'N_det_non_ref =',N_det_non_ref !$OMP END SINGLE !$OMP BARRIER !$OMP DO SCHEDULE(dynamic) do l = 1, N_det_non_ref ! print *, l, '/', N_det_non_ref double precision :: t_il,phase_il,hil call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,l),N_int,hil,phase_il,exc,degree) t_il = hil * lambda_mrcc(i_state,l) if (dabs(t_il) < mo_integrals_threshold) then cycle endif ! loop on the non ref determinants do j = 1, N_connect_ref ! loop on the excitation operators linked to i do k = 1, N_int key_test(k,1) = psi_non_ref(k,1,l) key_test(k,2) = psi_non_ref(k,2,l) enddo ! we apply the excitation operator T_I->j call apply_excitation_operator(key_test,excitation_operators(1,j),i_ok) if(i_ok.ne.1)cycle ! we check if such determinant is already in the wave function if(is_in_wavefunction(key_test,N_int))cycle ! we get the phase for psi_non_ref(l) -> T_I->j |psi_non_ref(l)> call get_excitation(psi_non_ref(1,1,l),key_test,exc,degree,phase_la,N_int) ! we get the phase T_I->j call i_H_j_phase_out(psi_ref(1,1,i),psi_non_ref(1,1,index_connected(j)),N_int,hij,phase_ij,exc,degree) ! we compute the contribution to the coef of key_test dij = t_il * hij * phase_la *phase_ij *lambda_mrcc(i_state,index_connected(j)) * 0.5d0 if (dabs(dij) < mo_integrals_threshold) then cycle endif ! we compute the interaction of such determinant with all the non_ref dets call filter_connected(psi_non_ref,key_test,N_int,N_det_non_ref,idx_vector) do k = 1, idx_vector(0) m = idx_vector(k) call i_H_j_phase_out(key_test,psi_non_ref(1,1,m),N_int,hij,phase,exc,degree) delta_ij_tmp(i,m,i_state) += hij * dij enddo enddo if(dabs(psi_ref_coef(i,i_state)).le.5.d-5) then delta_ii_tmp(i,i_state) -= & delta_ij_tmp(i,l,i_state) * psi_non_ref_coef(l,i_state) & / psi_ref_coef(i,i_state) endif enddo !$OMP END DO enddo !$OMP CRITICAL delta_ij_ = delta_ij_ + delta_ij_tmp delta_ii_ = delta_ii_ + delta_ii_tmp !$OMP END CRITICAL deallocate(delta_ii_tmp,delta_ij_tmp) deallocate(idx_vector) deallocate(key_test) !$OMP END PARALLEL deallocate(excitation_operators) deallocate(amplitudes_phase_less) end subroutine apply_excitation_operator(key_in,excitation_operator,i_ok) use bitmasks implicit none integer(bit_kind), intent(inout) :: key_in integer, intent (out) :: i_ok integer*2 :: excitation_operator(5) integer :: i_particle,i_hole,ispin ! Do excitation if(excitation_operator(5)==1)then ! mono alpha i_hole = excitation_operator(1) i_particle = excitation_operator(2) ispin = 1 call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) else if (excitation_operator(5)==-1)then ! mono beta i_hole = excitation_operator(3) i_particle = excitation_operator(4) ispin = 2 call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) else if (excitation_operator(5) == -2 )then ! double beta i_hole = excitation_operator(1) i_particle = excitation_operator(2) ispin = 2 call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) if(i_ok.ne.1)return i_hole = excitation_operator(3) i_particle = excitation_operator(4) ispin = 2 call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) else if (excitation_operator(5) == 2 )then ! double alpha i_hole = excitation_operator(1) i_particle = excitation_operator(2) ispin = 1 call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) if(i_ok.ne.1)return i_hole = excitation_operator(3) i_particle = excitation_operator(4) ispin = 1 call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) else if (excitation_operator(5) == 0 )then ! double alpha/alpha i_hole = excitation_operator(1) i_particle = excitation_operator(2) ispin = 1 call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) if(i_ok.ne.1)return i_hole = excitation_operator(3) i_particle = excitation_operator(4) ispin = 2 call do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) endif end