subroutine get_excitation_degree(key1,key2,degree,Nint) use bitmasks implicit none BEGIN_DOC ! Returns the excitation degree between two determinants END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key1(Nint,2) integer(bit_kind), intent(in) :: key2(Nint,2) integer, intent(out) :: degree integer :: l ASSERT (Nint > 0) degree = popcnt(xor( key1(1,1), key2(1,1))) + & popcnt(xor( key1(1,2), key2(1,2))) !DIR$ NOUNROLL do l=2,Nint degree = degree+ popcnt(xor( key1(l,1), key2(l,1))) + & popcnt(xor( key1(l,2), key2(l,2))) enddo ASSERT (degree >= 0) degree = ishft(degree,-1) end subroutine get_excitation(det1,det2,exc,degree,phase,Nint) use bitmasks implicit none BEGIN_DOC ! Returns the excitation operators between two determinants and the phase END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: det1(Nint,2) integer(bit_kind), intent(in) :: det2(Nint,2) integer, intent(out) :: exc(0:2,2,2) integer, intent(out) :: degree double precision, intent(out) :: phase ! exc(number,hole/particle,spin) ! ex : ! exc(0,1,1) = number of holes alpha ! exc(0,2,1) = number of particle alpha ! exc(0,2,2) = number of particle beta ! exc(1,2,1) = first particle alpha ! exc(1,1,1) = first hole alpha ! exc(1,2,2) = first particle beta ! exc(1,1,2) = first hole beta ASSERT (Nint > 0) !DIR$ FORCEINLINE call get_excitation_degree(det1,det2,degree,Nint) select case (degree) case (3:) degree = -1 return case (2) call get_double_excitation(det1,det2,exc,phase,Nint) return case (1) call get_mono_excitation(det1,det2,exc,phase,Nint) return case(0) return end select end subroutine decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) use bitmasks implicit none BEGIN_DOC ! Decodes the exc arrays returned by get_excitation. ! h1,h2 : Holes ! p1,p2 : Particles ! s1,s2 : Spins (1:alpha, 2:beta) ! degree : Degree of excitation END_DOC integer, intent(in) :: exc(0:2,2,2),degree integer, intent(out) :: h1,h2,p1,p2,s1,s2 ASSERT (degree > 0) ASSERT (degree < 3) select case(degree) case(2) if (exc(0,1,1) == 2) then h1 = exc(1,1,1) h2 = exc(2,1,1) p1 = exc(1,2,1) p2 = exc(2,2,1) s1 = 1 s2 = 1 else if (exc(0,1,2) == 2) then h1 = exc(1,1,2) h2 = exc(2,1,2) p1 = exc(1,2,2) p2 = exc(2,2,2) s1 = 2 s2 = 2 else h1 = exc(1,1,1) h2 = exc(1,1,2) p1 = exc(1,2,1) p2 = exc(1,2,2) s1 = 1 s2 = 2 endif case(1) if (exc(0,1,1) == 1) then h1 = exc(1,1,1) h2 = 0 p1 = exc(1,2,1) p2 = 0 s1 = 1 s2 = 0 else h1 = exc(1,1,2) h2 = 0 p1 = exc(1,2,2) p2 = 0 s1 = 2 s2 = 0 endif case(0) h1 = 0 p1 = 0 h2 = 0 p2 = 0 s1 = 0 s2 = 0 end select end subroutine get_double_excitation(det1,det2,exc,phase,Nint) use bitmasks implicit none BEGIN_DOC ! Returns the two excitation operators between two doubly excited determinants and the phase END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: det1(Nint,2) integer(bit_kind), intent(in) :: det2(Nint,2) integer, intent(out) :: exc(0:2,2,2) double precision, intent(out) :: phase integer :: tz integer :: l, ispin, idx_hole, idx_particle, ishift integer :: nperm integer :: i,j,k,m,n integer :: high, low integer :: a,b,c,d integer(bit_kind) :: hole, particle, tmp double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /) ASSERT (Nint > 0) nperm = 0 exc(0,1,1) = 0 exc(0,2,1) = 0 exc(0,1,2) = 0 exc(0,2,2) = 0 do ispin = 1,2 idx_particle = 0 idx_hole = 0 ishift = 1-bit_kind_size do l=1,Nint ishift = ishift + bit_kind_size if (det1(l,ispin) == det2(l,ispin)) then cycle endif tmp = xor( det1(l,ispin), det2(l,ispin) ) particle = iand(tmp, det2(l,ispin)) hole = iand(tmp, det1(l,ispin)) do while (particle /= 0_bit_kind) tz = trailz(particle) idx_particle = idx_particle + 1 exc(0,2,ispin) = exc(0,2,ispin) + 1 exc(idx_particle,2,ispin) = tz+ishift particle = iand(particle,particle-1_bit_kind) enddo if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin)==2 exit endif do while (hole /= 0_bit_kind) tz = trailz(hole) idx_hole = idx_hole + 1 exc(0,1,ispin) = exc(0,1,ispin) + 1 exc(idx_hole,1,ispin) = tz+ishift hole = iand(hole,hole-1_bit_kind) enddo if (iand(exc(0,1,ispin),exc(0,2,ispin))==2) then ! exc(0,1,ispin)==2 or exc(0,2,ispin) exit endif enddo select case (exc(0,1,ispin)) case(0) cycle case(1) low = min(exc(1,1,ispin), exc(1,2,ispin)) high = max(exc(1,1,ispin), exc(1,2,ispin)) ASSERT (low > 0) j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) n = iand(low-1,bit_kind_size-1)+1 ! mod(low,bit_kind_size) ASSERT (high > 0) k = ishft(high-1,-bit_kind_shift)+1 m = iand(high-1,bit_kind_size-1)+1 if (j==k) then nperm = nperm + popcnt(iand(det1(j,ispin), & iand( ibset(0_bit_kind,m-1)-1_bit_kind, & ibclr(-1_bit_kind,n)+1_bit_kind ) )) else nperm = nperm + popcnt(iand(det1(k,ispin), & ibset(0_bit_kind,m-1)-1_bit_kind)) if (n < bit_kind_size) then nperm = nperm + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind)) endif do i=j+1,k-1 nperm = nperm + popcnt(det1(i,ispin)) end do endif case (2) do i=1,2 low = min(exc(i,1,ispin), exc(i,2,ispin)) high = max(exc(i,1,ispin), exc(i,2,ispin)) ASSERT (low > 0) j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) n = iand(low-1,bit_kind_size-1)+1 ! mod(low,bit_kind_size) ASSERT (high > 0) k = ishft(high-1,-bit_kind_shift)+1 m = iand(high-1,bit_kind_size-1)+1 if (j==k) then nperm = nperm + popcnt(iand(det1(j,ispin), & iand( ibset(0_bit_kind,m-1)-1_bit_kind, & ibclr(-1_bit_kind,n)+1_bit_kind ) )) else nperm = nperm + popcnt(iand(det1(k,ispin), & ibset(0_bit_kind,m-1)-1_bit_kind)) if (n < bit_kind_size) then nperm = nperm + popcnt(iand(det1(j,ispin), ibclr(-1_bit_kind,n) +1_bit_kind)) endif do l=j+1,k-1 nperm = nperm + popcnt(det1(l,ispin)) end do endif enddo a = min(exc(1,1,ispin), exc(1,2,ispin)) b = max(exc(1,1,ispin), exc(1,2,ispin)) c = min(exc(2,1,ispin), exc(2,2,ispin)) d = max(exc(2,1,ispin), exc(2,2,ispin)) if (c>a .and. cb) then nperm = nperm + 1 endif exit end select enddo phase = phase_dble(iand(nperm,1)) end subroutine get_mono_excitation(det1,det2,exc,phase,Nint) use bitmasks implicit none BEGIN_DOC ! Returns the excitation operator between two singly excited determinants and the phase END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: det1(Nint,2) integer(bit_kind), intent(in) :: det2(Nint,2) integer, intent(out) :: exc(0:2,2,2) double precision, intent(out) :: phase integer :: tz integer :: l, ispin, idx_hole, idx_particle, ishift integer :: nperm integer :: i,j,k,m,n integer :: high, low integer :: a,b,c,d integer(bit_kind) :: hole, particle, tmp double precision, parameter :: phase_dble(0:1) = (/ 1.d0, -1.d0 /) ASSERT (Nint > 0) nperm = 0 exc(0,1,1) = 0 exc(0,2,1) = 0 exc(0,1,2) = 0 exc(0,2,2) = 0 do ispin = 1,2 ishift = 1-bit_kind_size do l=1,Nint ishift = ishift + bit_kind_size if (det1(l,ispin) == det2(l,ispin)) then cycle endif tmp = xor( det1(l,ispin), det2(l,ispin) ) particle = iand(tmp, det2(l,ispin)) hole = iand(tmp, det1(l,ispin)) if (particle /= 0_bit_kind) then tz = trailz(particle) exc(0,2,ispin) = 1 exc(1,2,ispin) = tz+ishift endif if (hole /= 0_bit_kind) then tz = trailz(hole) exc(0,1,ispin) = 1 exc(1,1,ispin) = tz+ishift endif if ( iand(exc(0,1,ispin),exc(0,2,ispin)) /= 1) then ! exc(0,1,ispin)/=1 and exc(0,2,ispin) /= 1 cycle endif low = min(exc(1,1,ispin),exc(1,2,ispin)) high = max(exc(1,1,ispin),exc(1,2,ispin)) ASSERT (low > 0) j = ishft(low-1,-bit_kind_shift)+1 ! Find integer in array(Nint) n = iand(low-1,bit_kind_size-1)+1 ! mod(low,bit_kind_size) ASSERT (high > 0) k = ishft(high-1,-bit_kind_shift)+1 m = iand(high-1,bit_kind_size-1)+1 if (j==k) then nperm = popcnt(iand(det1(j,ispin), & iand(ibset(0_bit_kind,m-1)-1_bit_kind,ibclr(-1_bit_kind,n)+1_bit_kind))) else nperm = nperm + popcnt(iand(det1(k,ispin),ibset(0_bit_kind,m-1)-1_bit_kind)) if (n < bit_kind_size) then nperm = nperm + popcnt(iand(det1(j,ispin),ibclr(-1_bit_kind,n)+1_bit_kind)) endif do i=j+1,k-1 nperm = nperm + popcnt(det1(i,ispin)) end do endif phase = phase_dble(iand(nperm,1)) return enddo enddo end subroutine bitstring_to_list_ab( string, list, n_elements, Nint) use bitmasks implicit none BEGIN_DOC ! Gives the inidices(+1) of the bits set to 1 in the bit string ! For alpha/beta determinants END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: string(Nint,2) integer, intent(out) :: list(Nint*bit_kind_size,2) integer, intent(out) :: n_elements(2) integer :: i, j, ishift integer(bit_kind) :: l n_elements(1) = 0 n_elements(2) = 0 ishift = 1 do i=1,Nint l = string(i,1) do while (l /= 0_bit_kind) j = trailz(l) n_elements(1) = n_elements(1)+1 l = ibclr(l,j) list(n_elements(1),1) = ishift+j enddo l = string(i,2) do while (l /= 0_bit_kind) j = trailz(l) n_elements(2) = n_elements(2)+1 l = ibclr(l,j) list(n_elements(2),2) = ishift+j enddo ishift = ishift + bit_kind_size enddo end subroutine bitstring_to_list_ab_old( string, list, n_elements, Nint) use bitmasks implicit none BEGIN_DOC ! Gives the inidices(+1) of the bits set to 1 in the bit string ! For alpha/beta determinants END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: string(Nint,2) integer, intent(out) :: list(Nint*bit_kind_size,2) integer, intent(out) :: n_elements(2) integer :: i, ishift integer(bit_kind) :: l n_elements(1) = 0 n_elements(2) = 0 ishift = 2 do i=1,Nint l = string(i,1) do while (l /= 0_bit_kind) n_elements(1) = n_elements(1)+1 list(n_elements(1),1) = ishift+popcnt(l-1_bit_kind) - popcnt(l) l = iand(l,l-1_bit_kind) enddo l = string(i,2) do while (l /= 0_bit_kind) n_elements(2) = n_elements(2)+1 list(n_elements(2),2) = ishift+popcnt(l-1_bit_kind) - popcnt(l) l = iand(l,l-1_bit_kind) enddo ishift = ishift + bit_kind_size enddo end subroutine i_H_j_new(key_i,key_j,Nint,hij) use bitmasks implicit none BEGIN_DOC ! Returns where i and j are determinants END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) double precision, intent(out) :: hij integer :: exc(0:2,2,2) integer :: degree double precision :: get_mo_bielec_integral integer :: m,n,p,q integer :: i,j,k integer :: occ(Nint*bit_kind_size,2) double precision :: diag_H_mat_elem, phase,phase_2 integer :: n_occ_ab(2) logical :: has_mipi(Nint*bit_kind_size) double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) PROVIDE mo_bielec_integrals_in_map mo_integrals_map ASSERT (Nint > 0) ASSERT (Nint == N_int) ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) hij = 0.d0 !DIR$ FORCEINLINE call get_excitation_degree(key_i,key_j,degree,Nint) integer :: spin select case (degree) case (2) call get_double_excitation(key_i,key_j,exc,phase,Nint) if (exc(0,1,1) == 1) then ! Mono alpha, mono beta hij = phase*get_mo_bielec_integral( & exc(1,1,1), & exc(1,1,2), & exc(1,2,1), & exc(1,2,2) ,mo_integrals_map) else if (exc(0,1,1) == 2) then ! Double alpha hij = phase*(get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(1,2,1), & exc(2,2,1) ,mo_integrals_map) - & get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(2,2,1), & exc(1,2,1) ,mo_integrals_map) ) else if (exc(0,1,2) == 2) then ! Double beta hij = phase*(get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(1,2,2), & exc(2,2,2) ,mo_integrals_map) - & get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(2,2,2), & exc(1,2,2) ,mo_integrals_map) ) endif case (1) call get_mono_excitation(key_i,key_j,exc,phase,Nint) !DIR$ FORCEINLINE call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint) has_mipi = .False. if (exc(0,1,1) == 1) then ! Mono alpha m = exc(1,1,1) p = exc(1,2,1) spin = 1 do k = 1, elec_alpha_num i = occ(k,1) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_beta_num i = occ(k,2) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_alpha_num hij = hij + mipi(occ(k,1)) - miip(occ(k,1)) enddo do k = 1, elec_beta_num hij = hij + mipi(occ(k,2)) enddo else ! Mono beta m = exc(1,1,2) p = exc(1,2,2) spin = 2 do k = 1, elec_beta_num i = occ(k,2) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_alpha_num i = occ(k,1) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_alpha_num hij = hij + mipi(occ(k,1)) enddo do k = 1, elec_beta_num hij = hij + mipi(occ(k,2)) - miip(occ(k,2)) enddo endif hij = phase*(hij + mo_mono_elec_integral(m,p)) case (0) hij = diag_H_mat_elem(key_i,Nint) end select end subroutine i_H_j(key_i,key_j,Nint,hij) use bitmasks implicit none BEGIN_DOC ! Returns where i and j are determinants END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) double precision, intent(out) :: hij integer :: exc(0:2,2,2) integer :: degree double precision :: get_mo_bielec_integral integer :: m,n,p,q integer :: i,j,k integer :: occ(Nint*bit_kind_size,2) double precision :: diag_H_mat_elem, phase,phase_2 integer :: n_occ_ab(2) logical :: has_mipi(Nint*bit_kind_size) double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) PROVIDE mo_bielec_integrals_in_map mo_integrals_map ASSERT (Nint > 0) ASSERT (Nint == N_int) ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) hij = 0.d0 !DIR$ FORCEINLINE call get_excitation_degree(key_i,key_j,degree,Nint) integer :: spin select case (degree) case (2) call get_double_excitation(key_i,key_j,exc,phase,Nint) if (exc(0,1,1) == 1) then ! Mono alpha, mono beta if(exc(1,1,1) == exc(1,2,2) )then hij = phase * big_array_exchange_integrals(exc(1,1,1),exc(1,1,2),exc(1,2,1)) else if (exc(1,2,1) ==exc(1,1,2))then hij = phase * big_array_exchange_integrals(exc(1,2,1),exc(1,1,1),exc(1,2,2)) else hij = phase*get_mo_bielec_integral( & exc(1,1,1), & exc(1,1,2), & exc(1,2,1), & exc(1,2,2) ,mo_integrals_map) endif else if (exc(0,1,1) == 2) then ! Double alpha hij = phase*(get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(1,2,1), & exc(2,2,1) ,mo_integrals_map) - & get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(2,2,1), & exc(1,2,1) ,mo_integrals_map) ) else if (exc(0,1,2) == 2) then ! Double beta hij = phase*(get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(1,2,2), & exc(2,2,2) ,mo_integrals_map) - & get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(2,2,2), & exc(1,2,2) ,mo_integrals_map) ) endif case (1) call get_mono_excitation(key_i,key_j,exc,phase,Nint) !DIR$ FORCEINLINE call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint) has_mipi = .False. if (exc(0,1,1) == 1) then ! Mono alpha m = exc(1,1,1) p = exc(1,2,1) spin = 1 ! do k = 1, elec_alpha_num ! i = occ(k,1) ! if (.not.has_mipi(i)) then ! mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) ! miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) ! has_mipi(i) = .True. ! endif ! enddo ! do k = 1, elec_beta_num ! i = occ(k,2) ! if (.not.has_mipi(i)) then ! mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) ! has_mipi(i) = .True. ! endif ! enddo ! ! do k = 1, elec_alpha_num ! hij = hij + mipi(occ(k,1)) - miip(occ(k,1)) ! enddo ! do k = 1, elec_beta_num ! hij = hij + mipi(occ(k,2)) ! enddo else ! Mono beta m = exc(1,1,2) p = exc(1,2,2) spin = 2 ! do k = 1, elec_beta_num ! i = occ(k,2) ! if (.not.has_mipi(i)) then ! mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) ! miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) ! has_mipi(i) = .True. ! endif ! enddo ! do k = 1, elec_alpha_num ! i = occ(k,1) ! if (.not.has_mipi(i)) then ! mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) ! has_mipi(i) = .True. ! endif ! enddo ! ! do k = 1, elec_alpha_num ! hij = hij + mipi(occ(k,1)) ! enddo ! do k = 1, elec_beta_num ! hij = hij + mipi(occ(k,2)) - miip(occ(k,2)) ! enddo endif ! hij = phase*(hij + mo_mono_elec_integral(m,p)) call get_mono_excitation_from_fock(key_i,key_j,p,m,spin,phase,hij) case (0) hij = diag_H_mat_elem(key_i,Nint) end select end subroutine i_H_j_phase_out(key_i,key_j,Nint,hij,phase,exc,degree) use bitmasks implicit none BEGIN_DOC ! Returns where i and j are determinants END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) double precision, intent(out) :: hij, phase integer,intent(out) :: exc(0:2,2,2) integer,intent(out) :: degree double precision :: get_mo_bielec_integral integer :: m,n,p,q integer :: i,j,k integer :: occ(Nint*bit_kind_size,2) double precision :: diag_H_mat_elem integer :: n_occ_ab(2) logical :: has_mipi(Nint*bit_kind_size) double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) PROVIDE mo_bielec_integrals_in_map mo_integrals_map ASSERT (Nint > 0) ASSERT (Nint == N_int) ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) hij = 0.d0 !DIR$ FORCEINLINE call get_excitation_degree(key_i,key_j,degree,Nint) select case (degree) case (2) call get_double_excitation(key_i,key_j,exc,phase,Nint) if (exc(0,1,1) == 1) then ! Mono alpha, mono beta hij = phase*get_mo_bielec_integral( & exc(1,1,1), & exc(1,1,2), & exc(1,2,1), & exc(1,2,2) ,mo_integrals_map) else if (exc(0,1,1) == 2) then ! Double alpha hij = phase*(get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(1,2,1), & exc(2,2,1) ,mo_integrals_map) - & get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(2,2,1), & exc(1,2,1) ,mo_integrals_map) ) else if (exc(0,1,2) == 2) then ! Double beta hij = phase*(get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(1,2,2), & exc(2,2,2) ,mo_integrals_map) - & get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(2,2,2), & exc(1,2,2) ,mo_integrals_map) ) endif case (1) call get_mono_excitation(key_i,key_j,exc,phase,Nint) !DIR$ FORCEINLINE call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint) has_mipi = .False. if (exc(0,1,1) == 1) then ! Mono alpha m = exc(1,1,1) p = exc(1,2,1) do k = 1, elec_alpha_num i = occ(k,1) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_beta_num i = occ(k,2) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_alpha_num hij = hij + mipi(occ(k,1)) - miip(occ(k,1)) enddo do k = 1, elec_beta_num hij = hij + mipi(occ(k,2)) enddo else ! Mono beta m = exc(1,1,2) p = exc(1,2,2) do k = 1, elec_beta_num i = occ(k,2) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_alpha_num i = occ(k,1) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_alpha_num hij = hij + mipi(occ(k,1)) enddo do k = 1, elec_beta_num hij = hij + mipi(occ(k,2)) - miip(occ(k,2)) enddo endif hij = phase*(hij + mo_mono_elec_integral(m,p)) case (0) hij = diag_H_mat_elem(key_i,Nint) end select end subroutine i_H_j_verbose(key_i,key_j,Nint,hij,hmono,hdouble) use bitmasks implicit none BEGIN_DOC ! Returns where i and j are determinants END_DOC integer, intent(in) :: Nint integer(bit_kind), intent(in) :: key_i(Nint,2), key_j(Nint,2) double precision, intent(out) :: hij,hmono,hdouble integer :: exc(0:2,2,2) integer :: degree double precision :: get_mo_bielec_integral integer :: m,n,p,q integer :: i,j,k integer :: occ(Nint*bit_kind_size,2) double precision :: diag_H_mat_elem, phase,phase_2 integer :: n_occ_ab(2) logical :: has_mipi(Nint*bit_kind_size) double precision :: mipi(Nint*bit_kind_size), miip(Nint*bit_kind_size) PROVIDE mo_bielec_integrals_in_map mo_integrals_map ASSERT (Nint > 0) ASSERT (Nint == N_int) ASSERT (sum(popcnt(key_i(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(key_i(:,2))) == elec_beta_num) ASSERT (sum(popcnt(key_j(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(key_j(:,2))) == elec_beta_num) hij = 0.d0 hmono = 0.d0 hdouble = 0.d0 !DIR$ FORCEINLINE call get_excitation_degree(key_i,key_j,degree,Nint) select case (degree) case (2) call get_double_excitation(key_i,key_j,exc,phase,Nint) if (exc(0,1,1) == 1) then ! Mono alpha, mono beta hij = phase*get_mo_bielec_integral( & exc(1,1,1), & exc(1,1,2), & exc(1,2,1), & exc(1,2,2) ,mo_integrals_map) print*, 'hij verbose ',hij * phase print*, 'phase verbose',phase else if (exc(0,1,1) == 2) then ! Double alpha print*,'phase hij = ',phase hij = phase*(get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(1,2,1), & exc(2,2,1) ,mo_integrals_map) - & get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(2,2,1), & exc(1,2,1) ,mo_integrals_map) ) print*,get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(1,2,1), & exc(2,2,1) ,mo_integrals_map) print*,get_mo_bielec_integral( & exc(1,1,1), & exc(2,1,1), & exc(2,2,1), & exc(1,2,1) ,mo_integrals_map) else if (exc(0,1,2) == 2) then ! Double beta print*,'phase hij = ',phase print*, get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(1,2,2), & exc(2,2,2) ,mo_integrals_map ) print*, get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(2,2,2), & exc(1,2,2) ,mo_integrals_map) hij = phase*(get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(1,2,2), & exc(2,2,2) ,mo_integrals_map) - & get_mo_bielec_integral( & exc(1,1,2), & exc(2,1,2), & exc(2,2,2), & exc(1,2,2) ,mo_integrals_map) ) endif case (1) call get_mono_excitation(key_i,key_j,exc,phase,Nint) !DIR$ FORCEINLINE call bitstring_to_list_ab(key_i, occ, n_occ_ab, Nint) has_mipi = .False. if (exc(0,1,1) == 1) then ! Mono alpha m = exc(1,1,1) p = exc(1,2,1) do k = 1, elec_alpha_num i = occ(k,1) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_beta_num i = occ(k,2) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_alpha_num hdouble = hdouble + mipi(occ(k,1)) - miip(occ(k,1)) enddo do k = 1, elec_beta_num hdouble = hdouble + mipi(occ(k,2)) enddo else ! Mono beta m = exc(1,1,2) p = exc(1,2,2) do k = 1, elec_beta_num i = occ(k,2) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) miip(i) = get_mo_bielec_integral(m,i,i,p,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_alpha_num i = occ(k,1) if (.not.has_mipi(i)) then mipi(i) = get_mo_bielec_integral(m,i,p,i,mo_integrals_map) has_mipi(i) = .True. endif enddo do k = 1, elec_alpha_num hdouble = hdouble + mipi(occ(k,1)) enddo do k = 1, elec_beta_num hdouble = hdouble + mipi(occ(k,2)) - miip(occ(k,2)) enddo endif hmono = mo_mono_elec_integral(m,p) hij = phase*(hdouble + hmono) case (0) hij = diag_H_mat_elem(key_i,Nint) end select end subroutine create_minilist(key_mask, fullList, miniList, idx_miniList, N_fullList, N_miniList, Nint) use bitmasks implicit none integer, intent(in) :: N_fullList integer, intent(in) :: Nint integer(bit_kind), intent(in) :: fullList(Nint, 2, N_fullList) integer(bit_kind),intent(out) :: miniList(Nint, 2, N_fullList) integer,intent(out) :: idx_miniList(N_fullList), N_miniList integer(bit_kind) :: key_mask(Nint, 2) integer :: ni, k, i, n_a, n_b, e_a, e_b n_a = popcnt(key_mask(1,1)) n_b = popcnt(key_mask(1,2)) do ni=2,nint n_a = n_a + popcnt(key_mask(ni,1)) n_b = n_b + popcnt(key_mask(ni,2)) end do if(n_a == 0) then N_miniList = N_fullList do k=1,N_fullList do ni=1,Nint miniList(ni,1,k) = fullList(ni,1,k) miniList(ni,2,k) = fullList(ni,2,k) enddo enddo do i=1,N_fullList idx_miniList(i) = i end do return end if N_miniList = 0 do i=1,N_fullList e_a = n_a - popcnt(iand(fullList(1, 1, i), key_mask(1, 1))) e_b = n_b - popcnt(iand(fullList(1, 2, i), key_mask(1, 2))) do ni=2,nint e_a -= popcnt(iand(fullList(ni, 1, i), key_mask(ni, 1))) e_b -= popcnt(iand(fullList(ni, 2, i), key_mask(ni, 2))) end do if(e_a + e_b <= 2) then N_miniList = N_miniList + 1 do ni=1,Nint miniList(ni,1,N_miniList) = fullList(ni,1,i) miniList(ni,2,N_miniList) = fullList(ni,2,i) enddo idx_miniList(N_miniList) = i end if end do end subroutine subroutine create_minilist_find_previous(key_mask, fullList, miniList, N_fullList, N_miniList, fullMatch, Nint) use bitmasks implicit none integer, intent(in) :: N_fullList integer, intent(in) :: Nint integer(bit_kind), intent(in) :: fullList(Nint, 2, N_fullList) integer(bit_kind),intent(out) :: miniList(Nint, 2, N_fullList) integer(bit_kind) :: subList(Nint, 2, N_fullList) logical,intent(out) :: fullMatch integer,intent(out) :: N_miniList integer(bit_kind) :: key_mask(Nint, 2) integer :: ni, i, k, l, N_subList fullMatch = .false. N_miniList = 0 N_subList = 0 l = popcnt(key_mask(1,1)) + popcnt(key_mask(1,2)) do ni = 2,Nint l = l + popcnt(key_mask(ni,1)) + popcnt(key_mask(ni,2)) end do if(l == 0) then N_miniList = N_fullList do k=1,N_fullList do ni=1,Nint miniList(ni,1,k) = fullList(ni,1,k) miniList(ni,2,k) = fullList(ni,2,k) enddo enddo else do i=N_fullList,1,-1 k = l do ni=1,nint k -= popcnt(iand(key_mask(ni,1), fullList(ni,1,i))) + popcnt(iand(key_mask(ni,2), fullList(ni,2,i))) end do if(k == 2) then N_subList += 1 do ni=1,Nint subList(ni,1,N_subList) = fullList(ni,1,i) subList(ni,2,N_subList) = fullList(ni,2,i) enddo else if(k == 1) then N_minilist += 1 do ni=1,Nint miniList(ni,1,N_minilist) = fullList(ni,1,i) miniList(ni,2,N_minilist) = fullList(ni,2,i) enddo else if(k == 0) then fullMatch = .true. return end if end do end if if(N_subList > 0) then do k=1,N_subList do ni=1,Nint miniList(ni,1,N_minilist+k) = sublist(ni,1,k) miniList(ni,2,N_minilist+k) = sublist(ni,2,k) enddo enddo N_minilist = N_minilist + N_subList end if end subroutine subroutine i_H_psi(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array) use bitmasks implicit none BEGIN_DOC ! Computes = \sum_J c_J . ! ! Uses filter_connected_i_H_psi0 to get all the |J> to which |i> ! is connected. ! The i_H_psi_minilist is much faster but requires to build the ! minilists END_DOC integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) integer(bit_kind), intent(in) :: key(Nint,2) double precision, intent(in) :: coef(Ndet_max,Nstate) double precision, intent(out) :: i_H_psi_array(Nstate) integer :: i, ii,j double precision :: phase integer :: exc(0:2,2,2) double precision :: hij integer :: idx(0:Ndet) ASSERT (Nint > 0) ASSERT (N_int == Nint) ASSERT (Nstate > 0) ASSERT (Ndet > 0) ASSERT (Ndet_max >= Ndet) i_H_psi_array = 0.d0 call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx) if (Nstate == 1) then do ii=1,idx(0) i = idx(ii) !DIR$ FORCEINLINE call i_H_j(keys(1,1,i),key,Nint,hij) i_H_psi_array(1) = i_H_psi_array(1) + coef(i,1)*hij enddo else do ii=1,idx(0) i = idx(ii) !DIR$ FORCEINLINE call i_H_j(keys(1,1,i),key,Nint,hij) do j = 1, Nstate i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij enddo enddo endif end subroutine i_H_psi_minilist(key,keys,idx_key,N_minilist,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array) use bitmasks implicit none integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate,idx_key(Ndet), N_minilist integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) integer(bit_kind), intent(in) :: key(Nint,2) double precision, intent(in) :: coef(Ndet_max,Nstate) double precision, intent(out) :: i_H_psi_array(Nstate) integer :: i, ii,j, i_in_key, i_in_coef double precision :: phase integer :: exc(0:2,2,2) double precision :: hij integer :: idx(0:Ndet) BEGIN_DOC ! Computes = \sum_J c_J . ! ! Uses filter_connected_i_H_psi0 to get all the |J> to which |i> ! is connected. The |J> are searched in short pre-computed lists. END_DOC ASSERT (Nint > 0) ASSERT (N_int == Nint) ASSERT (Nstate > 0) ASSERT (Ndet > 0) ASSERT (Ndet_max >= Ndet) i_H_psi_array = 0.d0 call filter_connected_i_H_psi0(keys,key,Nint,N_minilist,idx) if (Nstate == 1) then do ii=1,idx(0) i_in_key = idx(ii) i_in_coef = idx_key(idx(ii)) !DIR$ FORCEINLINE call i_H_j(keys(1,1,i_in_key),key,Nint,hij) i_H_psi_array(1) = i_H_psi_array(1) + coef(i_in_coef,1)*hij enddo else do ii=1,idx(0) i_in_key = idx(ii) i_in_coef = idx_key(idx(ii)) !DIR$ FORCEINLINE call i_H_j(keys(1,1,i_in_key),key,Nint,hij) do j = 1, Nstate i_H_psi_array(j) = i_H_psi_array(j) + coef(i_in_coef,j)*hij enddo enddo endif end subroutine i_H_psi_sec_ord(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_interaction,interactions) use bitmasks implicit none integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) integer(bit_kind), intent(in) :: key(Nint,2) double precision, intent(in) :: coef(Ndet_max,Nstate) double precision, intent(out) :: i_H_psi_array(Nstate) double precision, intent(out) :: interactions(Ndet) integer,intent(out) :: idx_interaction(0:Ndet) integer :: i, ii,j double precision :: phase integer :: exc(0:2,2,2) double precision :: hij integer :: idx(0:Ndet),n_interact BEGIN_DOC ! for the various Nstates END_DOC ASSERT (Nint > 0) ASSERT (N_int == Nint) ASSERT (Nstate > 0) ASSERT (Ndet > 0) ASSERT (Ndet_max >= Ndet) i_H_psi_array = 0.d0 call filter_connected_i_H_psi0(keys,key,Nint,Ndet,idx) n_interact = 0 do ii=1,idx(0) i = idx(ii) !DIR$ FORCEINLINE call i_H_j(keys(1,1,i),key,Nint,hij) if(dabs(hij).ge.1.d-8)then if(i.ne.1)then n_interact += 1 interactions(n_interact) = hij idx_interaction(n_interact) = i endif endif do j = 1, Nstate i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij enddo enddo idx_interaction(0) = n_interact end subroutine i_H_psi_SC2(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat) use bitmasks BEGIN_DOC ! for the various Nstate ! ! returns in addition ! ! the array of the index of the non connected determinants to key1 ! ! in order to know what double excitation can be repeated on key1 ! ! idx_repeat(0) is the number of determinants that can be used ! ! to repeat the excitations END_DOC implicit none integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) integer(bit_kind), intent(in) :: key(Nint,2) double precision, intent(in) :: coef(Ndet_max,Nstate) double precision, intent(out) :: i_H_psi_array(Nstate) integer , intent(out) :: idx_repeat(0:Ndet) integer :: i, ii,j double precision :: phase integer :: exc(0:2,2,2) double precision :: hij integer :: idx(0:Ndet) ASSERT (Nint > 0) ASSERT (N_int == Nint) ASSERT (Nstate > 0) ASSERT (Ndet > 0) ASSERT (Ndet_max >= Ndet) i_H_psi_array = 0.d0 call filter_connected_i_H_psi0_SC2(keys,key,Nint,Ndet,idx,idx_repeat) do ii=1,idx(0) i = idx(ii) !DIR$ FORCEINLINE call i_H_j(keys(1,1,i),key,Nint,hij) do j = 1, Nstate i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij enddo enddo end subroutine i_H_psi_SC2_verbose(key,keys,coef,Nint,Ndet,Ndet_max,Nstate,i_H_psi_array,idx_repeat) use bitmasks BEGIN_DOC ! for the various Nstate ! ! returns in addition ! ! the array of the index of the non connected determinants to key1 ! ! in order to know what double excitation can be repeated on key1 ! ! idx_repeat(0) is the number of determinants that can be used ! ! to repeat the excitations END_DOC implicit none integer, intent(in) :: Nint, Ndet,Ndet_max,Nstate integer(bit_kind), intent(in) :: keys(Nint,2,Ndet) integer(bit_kind), intent(in) :: key(Nint,2) double precision, intent(in) :: coef(Ndet_max,Nstate) double precision, intent(out) :: i_H_psi_array(Nstate) integer , intent(out) :: idx_repeat(0:Ndet) integer :: i, ii,j double precision :: phase integer :: exc(0:2,2,2) double precision :: hij integer :: idx(0:Ndet) ASSERT (Nint > 0) ASSERT (N_int == Nint) ASSERT (Nstate > 0) ASSERT (Ndet > 0) ASSERT (Ndet_max >= Ndet) i_H_psi_array = 0.d0 call filter_connected_i_H_psi0_SC2(keys,key,Nint,Ndet,idx,idx_repeat) print*,'--------' do ii=1,idx(0) print*,'--' i = idx(ii) !DIR$ FORCEINLINE call i_H_j(keys(1,1,i),key,Nint,hij) if (i==1)then print*,'i==1 !!' endif print*,coef(i,1) * hij,coef(i,1),hij do j = 1, Nstate i_H_psi_array(j) = i_H_psi_array(j) + coef(i,j)*hij enddo print*,i_H_psi_array(1) enddo print*,'------' end subroutine get_excitation_degree_vector_mono(key1,key2,degree,Nint,sze,idx) use bitmasks implicit none BEGIN_DOC ! Applies get_excitation_degree to an array of determinants and return only the mono excitations END_DOC integer, intent(in) :: Nint, sze integer(bit_kind), intent(in) :: key1(Nint,2,sze) integer(bit_kind), intent(in) :: key2(Nint,2) integer, intent(out) :: degree(sze) integer, intent(out) :: idx(0:sze) integer :: i,l,d,m ASSERT (Nint > 0) ASSERT (sze > 0) l=1 if (Nint==1) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) if (d > 2) then cycle else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else if (Nint==2) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) + & popcnt(xor( key1(2,1,i), key2(2,1))) + & popcnt(xor( key1(2,2,i), key2(2,2))) if (d > 2) then cycle else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else if (Nint==3) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) + & popcnt(xor( key1(2,1,i), key2(2,1))) + & popcnt(xor( key1(2,2,i), key2(2,2))) + & popcnt(xor( key1(3,1,i), key2(3,1))) + & popcnt(xor( key1(3,2,i), key2(3,2))) if (d > 2) then cycle else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else !DIR$ LOOP COUNT (1000) do i=1,sze d = 0 !DIR$ LOOP COUNT MIN(4) do m=1,Nint d = d + popcnt(xor( key1(m,1,i), key2(m,1))) & + popcnt(xor( key1(m,2,i), key2(m,2))) enddo if (d > 2) then cycle else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo endif idx(0) = l-1 end subroutine get_excitation_degree_vector_mono_or_exchange(key1,key2,degree,Nint,sze,idx) use bitmasks implicit none BEGIN_DOC ! Applies get_excitation_degree to an array of determinants and return only the mono excitations ! and the connections through exchange integrals END_DOC integer, intent(in) :: Nint, sze integer(bit_kind), intent(in) :: key1(Nint,2,sze) integer(bit_kind), intent(in) :: key2(Nint,2) integer, intent(out) :: degree(sze) integer, intent(out) :: idx(0:sze) integer(bit_kind) :: key_tmp(Nint,2) integer :: i,l,d,m integer :: exchange_1,exchange_2 ASSERT (Nint > 0) ASSERT (sze > 0) l=1 if (Nint==1) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) key_tmp(1,1) = xor(key1(1,1,i),key2(1,1)) key_tmp(1,2) = xor(key1(1,2,i),key2(1,2)) if(popcnt(key_tmp(1,1)) .gt.3 .or. popcnt(key_tmp(1,2)) .gt.3 )cycle !! no double excitations of same spin if (d > 4)cycle if (d ==4)then if(popcnt(xor(key_tmp(1,1),key_tmp(1,2))) == 0)then degree(l) = ishft(d,-1) idx(l) = i l = l+1 else cycle endif ! pause else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else print*, 'get_excitation_degree_vector_mono_or_exchange not yet implemented for N_int > 1 ...' stop endif idx(0) = l-1 end subroutine get_excitation_degree_vector_double_alpha_beta(key1,key2,degree,Nint,sze,idx) use bitmasks implicit none BEGIN_DOC ! Applies get_excitation_degree to an array of determinants and return only the mono excitations ! and the connections through exchange integrals END_DOC integer, intent(in) :: Nint, sze integer(bit_kind), intent(in) :: key1(Nint,2,sze) integer(bit_kind), intent(in) :: key2(Nint,2) integer, intent(out) :: degree(sze) integer, intent(out) :: idx(0:sze) integer(bit_kind) :: key_tmp(Nint,2) integer :: i,l,d,m integer :: degree_alpha, degree_beta ASSERT (Nint > 0) ASSERT (sze > 0) l=1 if (Nint==1) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) if (d .ne.4)cycle key_tmp(1,1) = xor(key1(1,1,i),key2(1,1)) key_tmp(1,2) = xor(key1(1,2,i),key2(1,2)) degree_alpha = popcnt(key_tmp(1,1)) degree_beta = popcnt(key_tmp(1,2)) if(degree_alpha .gt.3 .or. degree_beta .gt.3 )cycle !! no double excitations of same spin degree(l) = ishft(d,-1) idx(l) = i l = l+1 enddo else if (Nint==2) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) + & popcnt(xor( key1(2,1,i), key2(2,1))) + & popcnt(xor( key1(2,2,i), key2(2,2))) if (d .ne.4)cycle key_tmp(1,1) = xor(key1(1,1,i),key2(1,1)) key_tmp(1,2) = xor(key1(1,2,i),key2(1,2)) key_tmp(2,1) = xor(key1(2,1,i),key2(2,1)) key_tmp(2,2) = xor(key1(2,2,i),key2(2,2)) degree_alpha = popcnt(key_tmp(1,1)) + popcnt(key_tmp(2,1)) degree_beta = popcnt(key_tmp(1,2)) + popcnt(key_tmp(2,2)) if(degree_alpha .gt.3 .or. degree_beta .gt.3 )cycle !! no double excitations of same spin degree(l) = ishft(d,-1) idx(l) = i l = l+1 enddo else if (Nint==3) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) + & popcnt(xor( key1(2,1,i), key2(2,1))) + & popcnt(xor( key1(2,2,i), key2(2,2))) + & popcnt(xor( key1(3,1,i), key2(3,1))) + & popcnt(xor( key1(3,2,i), key2(3,2))) if (d .ne.4)cycle key_tmp(1,1) = xor(key1(1,1,i),key2(1,1)) key_tmp(1,2) = xor(key1(1,2,i),key2(1,2)) key_tmp(2,1) = xor(key1(2,1,i),key2(2,1)) key_tmp(2,2) = xor(key1(2,2,i),key2(2,2)) key_tmp(3,1) = xor(key1(3,1,i),key2(3,1)) key_tmp(3,2) = xor(key1(3,2,i),key2(3,2)) degree_alpha = popcnt(key_tmp(1,1)) + popcnt(key_tmp(2,1)) + popcnt(key_tmp(3,1)) degree_beta = popcnt(key_tmp(1,2)) + popcnt(key_tmp(2,2)) + popcnt(key_tmp(3,2)) if(degree_alpha .gt.3 .or. degree_beta .gt.3 )cycle !! no double excitations of same spin degree(l) = ishft(d,-1) idx(l) = i l = l+1 enddo else !DIR$ LOOP COUNT (1000) do i=1,sze d = 0 !DIR$ LOOP COUNT MIN(4) do m=1,Nint d = d + popcnt(xor( key1(m,1,i), key2(m,1))) & + popcnt(xor( key1(m,2,i), key2(m,2))) key_tmp(m,1) = xor(key1(m,1,i),key2(m,1)) key_tmp(m,2) = xor(key1(m,2,i),key2(m,2)) degree_alpha = popcnt(key_tmp(m,1)) degree_beta = popcnt(key_tmp(m,2)) enddo if(degree_alpha .gt.3 .or. degree_beta .gt.3 )cycle !! no double excitations of same spin degree(l) = ishft(d,-1) idx(l) = i l = l+1 enddo endif idx(0) = l-1 end subroutine get_excitation_degree_vector_mono_or_exchange_verbose(key1,key2,degree,Nint,sze,idx) use bitmasks implicit none BEGIN_DOC ! Applies get_excitation_degree to an array of determinants and return only the mono excitations ! and the connections through exchange integrals END_DOC integer, intent(in) :: Nint, sze integer(bit_kind), intent(in) :: key1(Nint,2,sze) integer(bit_kind), intent(in) :: key2(Nint,2) integer, intent(out) :: degree(sze) integer, intent(out) :: idx(0:sze) integer :: i,l,d,m integer :: exchange_1,exchange_2 ASSERT (Nint > 0) ASSERT (sze > 0) l=1 if (Nint==1) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) exchange_1 = popcnt(xor(ior(key1(1,1,i),key1(1,2,i)),ior(key2(1,1),key2(1,2)))) exchange_2 = popcnt(ior(xor(key1(1,1,i),key2(1,1)),xor(key1(1,2,i),key2(1,2)))) if(i==99)then integer(bit_kind) :: key_test(N_int,2) key_test(1,2) = 0_bit_kind call debug_det(key2,N_int) key_test(1,1) = ior(key2(1,1),key2(1,2)) call debug_det(key_test,N_int) key_test(1,1) = ior(key1(1,1,i),key1(1,2,i)) call debug_det(key1(1,1,i),N_int) call debug_det(key_test,N_int) key_test(1,1) = xor(ior(key1(1,1,i),key1(1,2,i)),ior(key2(1,1),key2(1,2))) call debug_det(key_test,N_int) print*, exchange_1 , exchange_2 stop endif if (d > 4)cycle if (d ==4)then if(exchange_1 .eq. 0 ) then degree(l) = ishft(d,-1) idx(l) = i l = l+1 else if (exchange_1 .eq. 2 .and. exchange_2.eq.2)then degree(l) = ishft(d,-1) idx(l) = i l = l+1 else cycle endif ! pause else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else if (Nint==2) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) + & popcnt(xor( key1(2,1,i), key2(2,1))) + & popcnt(xor( key1(2,2,i), key2(2,2))) exchange_1 = popcnt(xor(iand(key1(1,1,i),key1(1,2,i)),iand(key2(1,2),key2(1,2)))) + & popcnt(xor(iand(key1(2,1,i),key1(2,2,i)),iand(key2(2,2),key2(2,2)))) exchange_2 = popcnt(iand(xor(key1(1,1,i),key2(1,1)),xor(key1(1,2,i),key2(1,2)))) + & popcnt(iand(xor(key1(2,1,i),key2(2,1)),xor(key1(2,2,i),key2(2,2)))) if (d > 4)cycle if (d ==4)then if(exchange_1 .eq. 0 ) then degree(l) = ishft(d,-1) idx(l) = i l = l+1 else if (exchange_1 .eq. 2 .and. exchange_2.eq.2)then degree(l) = ishft(d,-1) idx(l) = i l = l+1 else cycle endif ! pause else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else if (Nint==3) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) + & popcnt(xor( key1(2,1,i), key2(2,1))) + & popcnt(xor( key1(2,2,i), key2(2,2))) + & popcnt(xor( key1(3,1,i), key2(3,1))) + & popcnt(xor( key1(3,2,i), key2(3,2))) exchange_1 = popcnt(xor(iand(key1(1,1,i),key1(1,2,i)),iand(key2(1,1),key2(1,2)))) + & popcnt(xor(iand(key1(2,1,i),key1(2,2,i)),iand(key2(2,1),key2(2,2)))) + & popcnt(xor(iand(key1(3,1,i),key1(3,2,i)),iand(key2(3,1),key2(3,2)))) exchange_2 = popcnt(iand(xor(key1(1,1,i),key2(1,1)),xor(key1(1,2,i),key2(1,2)))) + & popcnt(iand(xor(key1(2,1,i),key2(2,1)),xor(key1(2,2,i),key2(2,2)))) + & popcnt(iand(xor(key1(3,1,i),key2(3,1)),xor(key1(3,2,i),key2(3,2)))) if (d > 4)cycle if (d ==4)then if(exchange_1 .eq. 0 ) then degree(l) = ishft(d,-1) idx(l) = i l = l+1 else if (exchange_1 .eq. 2 .and. exchange_2.eq.2)then degree(l) = ishft(d,-1) idx(l) = i l = l+1 else cycle endif ! pause else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else !DIR$ LOOP COUNT (1000) do i=1,sze d = 0 exchange_1 = 0 !DIR$ LOOP COUNT MIN(4) do m=1,Nint d = d + popcnt(xor( key1(m,1,i), key2(m,1))) & + popcnt(xor( key1(m,2,i), key2(m,2))) exchange_1 = popcnt(xor(iand(key1(m,1,i),key1(m,2,i)),iand(key2(m,1),key2(m,2)))) exchange_2 = popcnt(iand(xor(key1(m,1,i),key2(m,1)),xor(key1(m,2,i),key2(m,2)))) enddo if (d > 4)cycle if (d ==4)then if(exchange_1 .eq. 0 ) then degree(l) = ishft(d,-1) idx(l) = i l = l+1 else if (exchange_1 .eq. 2 .and. exchange_2.eq.2)then degree(l) = ishft(d,-1) idx(l) = i l = l+1 else cycle endif ! pause else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo endif idx(0) = l-1 end subroutine get_excitation_degree_vector(key1,key2,degree,Nint,sze,idx) use bitmasks implicit none BEGIN_DOC ! Applies get_excitation_degree to an array of determinants END_DOC integer, intent(in) :: Nint, sze integer(bit_kind), intent(in) :: key1(Nint,2,sze) integer(bit_kind), intent(in) :: key2(Nint,2) integer, intent(out) :: degree(sze) integer, intent(out) :: idx(0:sze) integer :: i,l,d,m ASSERT (Nint > 0) ASSERT (sze > 0) l=1 if (Nint==1) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) if (d > 4) then cycle else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else if (Nint==2) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) + & popcnt(xor( key1(2,1,i), key2(2,1))) + & popcnt(xor( key1(2,2,i), key2(2,2))) if (d > 4) then cycle else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else if (Nint==3) then !DIR$ LOOP COUNT (1000) do i=1,sze d = popcnt(xor( key1(1,1,i), key2(1,1))) + & popcnt(xor( key1(1,2,i), key2(1,2))) + & popcnt(xor( key1(2,1,i), key2(2,1))) + & popcnt(xor( key1(2,2,i), key2(2,2))) + & popcnt(xor( key1(3,1,i), key2(3,1))) + & popcnt(xor( key1(3,2,i), key2(3,2))) if (d > 4) then cycle else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo else !DIR$ LOOP COUNT (1000) do i=1,sze d = 0 !DIR$ LOOP COUNT MIN(4) do m=1,Nint d = d + popcnt(xor( key1(m,1,i), key2(m,1))) & + popcnt(xor( key1(m,2,i), key2(m,2))) enddo if (d > 4) then cycle else degree(l) = ishft(d,-1) idx(l) = i l = l+1 endif enddo endif idx(0) = l-1 end double precision function diag_H_mat_elem_fock(det_ref,det_pert,fock_diag_tmp,Nint) use bitmasks implicit none BEGIN_DOC ! Computes when i is at most a double excitation from ! a reference. END_DOC integer,intent(in) :: Nint integer(bit_kind),intent(in) :: det_ref(Nint,2), det_pert(Nint,2) double precision, intent(in) :: fock_diag_tmp(2,mo_tot_num+1) integer :: degree double precision :: phase, E0 integer :: exc(0:2,2,2) integer :: h1, p1, h2, p2, s1, s2 call get_excitation_degree(det_ref,det_pert,degree,Nint) E0 = fock_diag_tmp(1,mo_tot_num+1) if (degree == 2) then call get_double_excitation(det_ref,det_pert,exc,phase,Nint) call decode_exc(exc,2,h1,p1,h2,p2,s1,s2) if ( (s1 == 1).and.(s2 == 1) ) then ! alpha/alpha diag_H_mat_elem_fock = E0 & - fock_diag_tmp(1,h1) & + ( fock_diag_tmp(1,p1) - mo_bielec_integral_jj_anti(h1,p1) ) & - ( fock_diag_tmp(1,h2) - mo_bielec_integral_jj_anti(h1,h2) & + mo_bielec_integral_jj_anti(p1,h2) ) & + ( fock_diag_tmp(1,p2) - mo_bielec_integral_jj_anti(h1,p2) & + mo_bielec_integral_jj_anti(p1,p2) - mo_bielec_integral_jj_anti(h2,p2) ) else if ( (s1 == 2).and.(s2 == 2) ) then ! beta/beta diag_H_mat_elem_fock = E0 & - fock_diag_tmp(2,h1) & + ( fock_diag_tmp(2,p1) - mo_bielec_integral_jj_anti(h1,p1) ) & - ( fock_diag_tmp(2,h2) - mo_bielec_integral_jj_anti(h1,h2) & + mo_bielec_integral_jj_anti(p1,h2) ) & + ( fock_diag_tmp(2,p2) - mo_bielec_integral_jj_anti(h1,p2) & + mo_bielec_integral_jj_anti(p1,p2) - mo_bielec_integral_jj_anti(h2,p2) ) else ! alpha/beta diag_H_mat_elem_fock = E0 & - fock_diag_tmp(1,h1) & + ( fock_diag_tmp(1,p1) - mo_bielec_integral_jj_anti(h1,p1) ) & - ( fock_diag_tmp(2,h2) - mo_bielec_integral_jj(h1,h2) & + mo_bielec_integral_jj(p1,h2) ) & + ( fock_diag_tmp(2,p2) - mo_bielec_integral_jj(h1,p2) & + mo_bielec_integral_jj(p1,p2) - mo_bielec_integral_jj_anti(h2,p2) ) endif else if (degree == 1) then call get_mono_excitation(det_ref,det_pert,exc,phase,Nint) call decode_exc(exc,1,h1,p1,h2,p2,s1,s2) if (s1 == 1) then diag_H_mat_elem_fock = E0 - fock_diag_tmp(1,h1) & + ( fock_diag_tmp(1,p1) - mo_bielec_integral_jj_anti(h1,p1) ) else diag_H_mat_elem_fock = E0 - fock_diag_tmp(2,h1) & + ( fock_diag_tmp(2,p1) - mo_bielec_integral_jj_anti(h1,p1) ) endif else if (degree == 0) then diag_H_mat_elem_fock = E0 else STOP 'Bug in diag_H_mat_elem_fock' endif end double precision function diag_H_mat_elem(det_in,Nint) implicit none BEGIN_DOC ! Computes END_DOC integer,intent(in) :: Nint integer(bit_kind),intent(in) :: det_in(Nint,2) integer(bit_kind) :: hole(Nint,2) integer(bit_kind) :: particle(Nint,2) integer :: i, nexc(2), ispin integer :: occ_particle(Nint*bit_kind_size,2) integer :: occ_hole(Nint*bit_kind_size,2) integer(bit_kind) :: det_tmp(Nint,2) integer :: na, nb ASSERT (Nint > 0) ASSERT (sum(popcnt(det_in(:,1))) == elec_alpha_num) ASSERT (sum(popcnt(det_in(:,2))) == elec_beta_num) nexc(1) = 0 nexc(2) = 0 do i=1,Nint hole(i,1) = xor(det_in(i,1),ref_bitmask(i,1)) hole(i,2) = xor(det_in(i,2),ref_bitmask(i,2)) particle(i,1) = iand(hole(i,1),det_in(i,1)) particle(i,2) = iand(hole(i,2),det_in(i,2)) hole(i,1) = iand(hole(i,1),ref_bitmask(i,1)) hole(i,2) = iand(hole(i,2),ref_bitmask(i,2)) nexc(1) = nexc(1) + popcnt(hole(i,1)) nexc(2) = nexc(2) + popcnt(hole(i,2)) enddo diag_H_mat_elem = ref_bitmask_energy if (nexc(1)+nexc(2) == 0) then return endif !call debug_det(det_in,Nint) integer :: tmp(2) !DIR$ FORCEINLINE call bitstring_to_list_ab(particle, occ_particle, tmp, Nint) ASSERT (tmp(1) == nexc(1)) ASSERT (tmp(2) == nexc(2)) !DIR$ FORCEINLINE call bitstring_to_list_ab(hole, occ_hole, tmp, Nint) ASSERT (tmp(1) == nexc(1)) ASSERT (tmp(2) == nexc(2)) det_tmp = ref_bitmask do ispin=1,2 na = elec_num_tab(ispin) nb = elec_num_tab(iand(ispin,1)+1) do i=1,nexc(ispin) !DIR$ FORCEINLINE call ac_operator( occ_particle(i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb) !DIR$ FORCEINLINE call a_operator ( occ_hole (i,ispin), ispin, det_tmp, diag_H_mat_elem, Nint,na,nb) enddo enddo end subroutine a_operator(iorb,ispin,key,hjj,Nint,na,nb) use bitmasks implicit none BEGIN_DOC ! Needed for diag_H_mat_elem END_DOC integer, intent(in) :: iorb, ispin, Nint integer, intent(inout) :: na, nb integer(bit_kind), intent(inout) :: key(Nint,2) double precision, intent(inout) :: hjj integer :: occ(Nint*bit_kind_size,2) integer :: other_spin integer :: k,l,i integer :: tmp(2) ASSERT (iorb > 0) ASSERT (ispin > 0) ASSERT (ispin < 3) ASSERT (Nint > 0) k = ishft(iorb-1,-bit_kind_shift)+1 ASSERT (k > 0) l = iorb - ishft(k-1,bit_kind_shift)-1 key(k,ispin) = ibclr(key(k,ispin),l) other_spin = iand(ispin,1)+1 !DIR$ FORCEINLINE call bitstring_to_list_ab(key, occ, tmp, Nint) na = na-1 hjj = hjj - mo_mono_elec_integral(iorb,iorb) ! Same spin do i=1,na hjj = hjj - mo_bielec_integral_jj_anti(occ(i,ispin),iorb) enddo ! Opposite spin do i=1,nb hjj = hjj - mo_bielec_integral_jj(occ(i,other_spin),iorb) enddo end subroutine ac_operator(iorb,ispin,key,hjj,Nint,na,nb) use bitmasks implicit none BEGIN_DOC ! Needed for diag_H_mat_elem END_DOC integer, intent(in) :: iorb, ispin, Nint integer, intent(inout) :: na, nb integer(bit_kind), intent(inout) :: key(Nint,2) double precision, intent(inout) :: hjj integer :: occ(Nint*bit_kind_size,2) integer :: other_spin integer :: k,l,i ASSERT (iorb > 0) ASSERT (ispin > 0) ASSERT (ispin < 3) ASSERT (Nint > 0) integer :: tmp(2) !DIR$ FORCEINLINE call bitstring_to_list_ab(key, occ, tmp, Nint) ASSERT (tmp(1) == elec_alpha_num) ASSERT (tmp(2) == elec_beta_num) k = ishft(iorb-1,-bit_kind_shift)+1 ASSERT (k > 0) l = iorb - ishft(k-1,bit_kind_shift)-1 key(k,ispin) = ibset(key(k,ispin),l) other_spin = iand(ispin,1)+1 hjj = hjj + mo_mono_elec_integral(iorb,iorb) ! Same spin do i=1,na hjj = hjj + mo_bielec_integral_jj_anti(occ(i,ispin),iorb) enddo ! Opposite spin do i=1,nb hjj = hjj + mo_bielec_integral_jj(occ(i,other_spin),iorb) enddo na = na+1 end subroutine get_occ_from_key(key,occ,Nint) use bitmasks implicit none BEGIN_DOC ! Returns a list of occupation numbers from a bitstring END_DOC integer , intent(in) :: Nint integer(bit_kind), intent(in) :: key(Nint,2) integer , intent(out) :: occ(Nint*bit_kind_size,2) integer :: tmp(2) !DIR$ FORCEINLINE call bitstring_to_list_ab(key, occ, tmp, Nint) end subroutine u0_H_u_0(e_0,u_0,n,keys_tmp,Nint) use bitmasks implicit none BEGIN_DOC ! Computes e_0 = / ! ! n : number of determinants ! END_DOC integer, intent(in) :: n,Nint double precision, intent(out) :: e_0 double precision, intent(in) :: u_0(n) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) double precision :: H_jj(n) double precision :: v_0(n) double precision :: u_dot_u,u_dot_v,diag_H_mat_elem integer :: i,j do i = 1, n H_jj(i) = diag_H_mat_elem(keys_tmp(1,1,i),Nint) enddo call H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint) e_0 = u_dot_v(v_0,u_0,n)/u_dot_u(u_0,n) end subroutine H_u_0(v_0,u_0,H_jj,n,keys_tmp,Nint) use bitmasks implicit none BEGIN_DOC ! Computes v_0 = H|u_0> ! ! n : number of determinants ! ! H_jj : array of END_DOC integer, intent(in) :: n,Nint double precision, intent(out) :: v_0(n) double precision, intent(in) :: u_0(n) double precision, intent(in) :: H_jj(n) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) integer, allocatable :: idx(:) double precision :: hij double precision, allocatable :: vt(:) integer :: i,j,k,l, jj,ii integer :: i0, j0 integer, allocatable :: shortcut(:), sort_idx(:) integer(bit_kind), allocatable :: sorted(:,:), version(:,:) integer(bit_kind) :: sorted_i(Nint) integer :: sh, sh2, ni, exa, ext, org_i, org_j, endi double precision :: local_threshold ASSERT (Nint > 0) ASSERT (Nint == N_int) ASSERT (n>0) PROVIDE ref_bitmask_energy davidson_criterion allocate (shortcut(0:n+1), sort_idx(n), sorted(Nint,n), version(Nint,n)) v_0 = 0.d0 call sort_dets_ab_v(keys_tmp, sorted, sort_idx, shortcut, version, n, Nint) !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(i,hij,j,k,jj,vt,ii,sh,sh2,ni,exa,ext,org_i,org_j,endi,local_threshold,sorted_i)& !$OMP SHARED(n,H_jj,u_0,keys_tmp,Nint,v_0,threshold_davidson,sorted,shortcut,sort_idx,version) allocate(vt(n)) Vt = 0.d0 !$OMP DO SCHEDULE(dynamic) do sh=1,shortcut(0) do sh2=1,sh exa = 0 do ni=1,Nint exa = exa + popcnt(xor(version(ni,sh), version(ni,sh2))) end do if(exa > 2) then cycle end if do i=shortcut(sh),shortcut(sh+1)-1 org_i = sort_idx(i) local_threshold = threshold_davidson - dabs(u_0(org_i)) if(sh==sh2) then endi = i-1 else endi = shortcut(sh2+1)-1 end if do ni=1,Nint sorted_i(ni) = sorted(ni,i) enddo do j=shortcut(sh2),endi org_j = sort_idx(j) if ( dabs(u_0(org_j)) > local_threshold ) then ext = exa do ni=1,Nint ext = ext + popcnt(xor(sorted_i(ni), sorted(ni,j))) end do if(ext <= 4) then call i_H_j(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),Nint,hij) vt (org_i) = vt (org_i) + hij*u_0(org_j) vt (org_j) = vt (org_j) + hij*u_0(org_i) endif endif enddo enddo enddo enddo !$OMP END DO !$OMP CRITICAL do i=1,n v_0(i) = v_0(i) + vt(i) enddo !$OMP END CRITICAL deallocate(vt) !$OMP END PARALLEL call sort_dets_ba_v(keys_tmp, sorted, sort_idx, shortcut, version, n, Nint) !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(i,hij,j,k,jj,vt,ii,sh,sh2,ni,exa,ext,org_i,org_j,endi,local_threshold)& !$OMP SHARED(n,H_jj,u_0,keys_tmp,Nint,v_0,threshold_davidson,sorted,shortcut,sort_idx,version) allocate(vt(n)) Vt = 0.d0 !$OMP DO SCHEDULE(dynamic) do sh=1,shortcut(0) do i=shortcut(sh),shortcut(sh+1)-1 org_i = sort_idx(i) local_threshold = threshold_davidson - dabs(u_0(org_i)) do j=shortcut(sh),i-1 org_j = sort_idx(j) if ( dabs(u_0(org_j)) > local_threshold ) then ext = 0 do ni=1,Nint ext = ext + popcnt(xor(sorted(ni,i), sorted(ni,j))) end do if(ext == 4) then call i_H_j(keys_tmp(1,1,org_j),keys_tmp(1,1,org_i),Nint,hij) vt (org_i) = vt (org_i) + hij*u_0(org_j) vt (org_j) = vt (org_j) + hij*u_0(org_i) end if end if end do end do enddo !$OMP END DO !$OMP CRITICAL do i=1,n v_0(i) = v_0(i) + vt(i) enddo !$OMP END CRITICAL deallocate(vt) !$OMP END PARALLEL do i=1,n v_0(i) += H_jj(i) * u_0(i) enddo deallocate (shortcut, sort_idx, sorted, version) end subroutine H_u_0_stored(v_0,u_0,hmatrix,sze) use bitmasks implicit none BEGIN_DOC ! Computes v_0 = H|u_0> ! ! n : number of determinants ! ! uses the big_matrix_stored array END_DOC integer, intent(in) :: sze double precision, intent(in) :: hmatrix(sze,sze) double precision, intent(out) :: v_0(sze) double precision, intent(in) :: u_0(sze) v_0 = 0.d0 call matrix_vector_product(u_0,v_0,hmatrix,sze,sze) end subroutine u_0_H_u_0_stored(e_0,u_0,hmatrix,sze) use bitmasks implicit none BEGIN_DOC ! Computes e_0 = ! ! n : number of determinants ! ! uses the big_matrix_stored array END_DOC integer, intent(in) :: sze double precision, intent(in) :: hmatrix(sze,sze) double precision, intent(out) :: e_0 double precision, intent(in) :: u_0(sze) double precision :: v_0(sze) double precision :: u_dot_v e_0 = 0.d0 v_0 = 0.d0 call matrix_vector_product(u_0,v_0,hmatrix,sze,sze) e_0 = u_dot_v(v_0,u_0,sze) end