subroutine mrcc_dress(delta_ij_sd_,Ndet_sd,i_generator,n_selected,det_buffer,Nint,iproc) use bitmasks implicit none integer, intent(in) :: i_generator,n_selected, Nint, iproc integer, intent(in) :: Ndet_sd double precision, intent(inout) :: delta_ij_sd_(Ndet_sd,Ndet_sd,*) integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) integer :: i,j,k,m integer :: new_size logical :: is_in_wavefunction integer :: degree(psi_det_size) integer :: idx(0:psi_det_size) logical :: good integer(bit_kind) :: tq(Nint,2,n_selected) integer :: N_tq, c_ref integer :: connected_to_ref N_tq = 0 do i=1,N_selected c_ref = connected_to_ref(det_buffer(1,1,i),psi_det_generators,Nint, & i_generator,N_det_generators) if (c_ref /= 0) then cycle endif ! Select determinants that are triple or quadruple excitations ! from the CAS good = .True. call get_excitation_degree_vector(psi_cas,det_buffer(1,1,i),degree,Nint,N_det_cas,idx) do k=1,idx(0) if (degree(k) < 3) then good = .False. exit endif enddo if (good) then if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint,N_det)) then N_tq += 1 do k=1,N_int tq(k,1,N_tq) = det_buffer(k,1,i) tq(k,2,N_tq) = det_buffer(k,2,i) enddo endif endif enddo ! Compute / (E0 - Haa) double precision :: hka, haa double precision :: haj double precision :: f(N_states) ! call i_h_j(psi_det(1,1,1), psi_det(1,1,64),Nint,hka) ! call debug_det(psi_det(1,1,1), N_int) ! call debug_det(psi_det(1,1,64), N_int) double precision :: phase integer :: exc(0:2,2,2) ! call get_excitation(psi_det(1,1,1),psi_det(1,1,64),exc,degree(1),phase,Nint) integer :: h1, p1, h2, p2, s1, s2 ! call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) ! print *, hka ! print *, h1, p1, h2, p2 ! print *, s1, s2 ! pause do i=1,N_tq call get_excitation_degree_vector(psi_sd,tq(1,1,i),degree,Nint,Ndet_sd,idx) call i_h_j(tq(1,1,i),tq(1,1,i),Nint,haa) do m=1,N_states f(m) = 1.d0/(ci_electronic_energy(m)-haa) enddo do k=1,idx(0) call i_h_j(tq(1,1,i),psi_sd(1,1,idx(k)),Nint,hka) do j=k,idx(0) call i_h_j(tq(1,1,i),psi_sd(1,1,idx(j)),Nint,haj) do m=1,N_states delta_ij_sd_(idx(k), idx(j),m) += haj*hka* f(m) delta_ij_sd_(idx(j), idx(k),m) += haj*hka* f(m) enddo call get_excitation(tq(1,1,i),psi_sd(1,1,idx(j)),exc,degree(1),phase,Nint) call decode_exc(exc,degree(1),h1,p1,h2,p2,s1,s2) if ( (h1 == 1).and. & (p1 == 6).and. & (h2 == 1).and. & (p2 == 6).and. & (s1 == 1).and. & (s2 == 2) ) then call debug_det(tq(1,1,i), N_int) call debug_det(psi_sd(1,1,idx(j)), N_int) print *, haj pause endif enddo enddo enddo end BEGIN_PROVIDER [ double precision, delta_ij_sd, (N_det_sd, N_det_sd,N_states) ] implicit none BEGIN_DOC ! Dressing matrix in SD basis END_DOC delta_ij_sd = 0.d0 call H_apply_mrcc(delta_ij_sd,N_det_sd) END_PROVIDER BEGIN_PROVIDER [ double precision, delta_ij, (N_det,N_det,N_states) ] implicit none BEGIN_DOC ! Dressing matrix in N_det basis END_DOC integer :: i,j,m delta_ij = 0.d0 do m=1,N_states do j=1,N_det_sd do i=1,N_det_sd delta_ij(idx_sd(i),idx_sd(j),m) = delta_ij_sd(i,j,m) enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det) ] implicit none BEGIN_DOC ! Dressed H with Delta_ij END_DOC integer :: i, j do j=1,N_det do i=1,N_det h_matrix_dressed(i,j) = h_matrix_all_dets(i,j) + delta_ij(i,j,1) if (i==j) then print *, i, delta_ij(i,j,1), h_matrix_all_dets(i,j) endif enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ] implicit none BEGIN_DOC ! Eigenvectors/values of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det CI_eigenvectors_dressed(i,j) = psi_coef(i,j) enddo enddo if (diag_algorithm == "Davidson") then stop 'use Lapack' ! call davidson_diag(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed, & ! size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_Dets) else if (diag_algorithm == "Lapack") then double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) allocate (eigenvectors(size(H_matrix_dressed,1),N_det)) allocate (eigenvalues(N_det)) call lapack_diag(eigenvalues,eigenvectors, & H_matrix_dressed,size(H_matrix_dressed,1),N_det) CI_electronic_energy_dressed(:) = 0.d0 do i=1,N_det CI_eigenvectors_dressed(i,1) = eigenvectors(i,1) enddo integer :: i_state double precision :: s2 i_state = 0 do j=1,N_det call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) if(dabs(s2-expected_s2).le.0.3d0)then i_state += 1 do i=1,N_det CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(i_state) = eigenvalues(j) CI_eigenvectors_s2_dressed(i_state) = s2 endif if (i_state.ge.N_states_diag) then exit endif enddo ! if(i_state < min(N_states_diag,N_det))then ! print *, 'pb with the number of states' ! print *, 'i_state = ',i_state ! print *, 'N_states_diag ',N_states_diag ! print *,'stopping ...' ! stop ! endif deallocate(eigenvectors,eigenvalues) endif END_PROVIDER BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ] implicit none BEGIN_DOC ! N_states lowest eigenvalues of the dressed CI matrix END_DOC integer :: j character*(8) :: st call write_time(output_Dets) do j=1,N_states_diag CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion write(st,'(I4)') j call write_double(output_Dets,CI_energy(j),'Energy of state '//trim(st)) call write_double(output_Dets,CI_eigenvectors_s2(j),'S^2 of state '//trim(st)) enddo END_PROVIDER