.. _mo_two_e_ints: .. program:: mo_two_e_ints .. default-role:: option ================== mo_two_e_ints ================== Here, all two-electron integrals (:math:`1/r_{12}`) are computed. As they have 4 indices and many are zero, they are stored in a map, as defined in :file:`Utils/map_module.f90`. To fetch an |AO| integral, use the `get_ao_two_e_integral(i,j,k,l,ao_integrals_map)` function, and to fetch an |MO| integral, use `get_two_e_integral(i,j,k,l,mo_integrals_map)` or `mo_two_e_integral(i,j,k,l)`. The conventions are: * For |AO| integrals : (ik|jl) = (11|22) * For |MO| integrals : = <12|12> EZFIO parameters ---------------- .. option:: io_mo_two_e_integrals Read/Write |MO| integrals from/to disk [ Write | Read | None ] Default: None .. option:: mo_integrals_threshold If | | < `mo_integrals_threshold` then is zero Default: 1.e-15 .. option:: no_vvvv_integrals If `True`, computes all integrals except for the integrals having 4 virtual indices Default: False .. option:: no_ivvv_integrals Can be switched on only if `no_vvvv_integrals` is `True`, then does not compute the integrals with 3 virtual indices and 1 belonging to the core inactive active orbitals Default: False .. option:: no_vvv_integrals Can be switched on only if `no_vvvv_integrals` is `True`, then does not compute the integrals with 3 virtual orbitals Default: False Providers --------- .. c:var:: big_array_coulomb_integrals .. code:: text double precision, allocatable :: big_array_coulomb_integrals (mo_num,mo_num,mo_num) double precision, allocatable :: big_array_exchange_integrals (mo_num,mo_num,mo_num) File: :file:`integrals_3_index.irp.f` big_array_coulomb_integrals(i,j) = = (ii|jj) big_array_exchange_integrals(i,j) = = (ij|ij) .. c:var:: big_array_exchange_integrals .. code:: text double precision, allocatable :: big_array_coulomb_integrals (mo_num,mo_num,mo_num) double precision, allocatable :: big_array_exchange_integrals (mo_num,mo_num,mo_num) File: :file:`integrals_3_index.irp.f` big_array_coulomb_integrals(i,j) = = (ii|jj) big_array_exchange_integrals(i,j) = = (ij|ij) .. c:var:: core_energy .. code:: text double precision :: core_energy File: :file:`core_quantities.irp.f` energy from the core : contains all core-core contributions .. c:var:: core_fock_operator .. code:: text double precision, allocatable :: core_fock_operator (mo_num,mo_num) File: :file:`core_quantities.irp.f` this is the contribution to the Fock operator from the core electrons .. c:var:: insert_into_mo_integrals_map .. code:: text subroutine insert_into_mo_integrals_map(n_integrals, & buffer_i, buffer_values, thr) File: :file:`map_integrals.irp.f` Create new entry into MO map, or accumulate in an existing entry .. c:var:: mo_integrals_cache .. code:: text double precision, allocatable :: mo_integrals_cache (0_8:128_8*128_8*128_8*128_8) File: :file:`map_integrals.irp.f` Cache of MO integrals for fast access .. c:var:: mo_integrals_cache_max .. code:: text integer*4 :: mo_integrals_cache_min integer*4 :: mo_integrals_cache_max integer*8 :: mo_integrals_cache_min_8 integer*8 :: mo_integrals_cache_max_8 File: :file:`map_integrals.irp.f` Min and max values of the MOs for which the integrals are in the cache .. c:var:: mo_integrals_cache_max_8 .. code:: text integer*4 :: mo_integrals_cache_min integer*4 :: mo_integrals_cache_max integer*8 :: mo_integrals_cache_min_8 integer*8 :: mo_integrals_cache_max_8 File: :file:`map_integrals.irp.f` Min and max values of the MOs for which the integrals are in the cache .. c:var:: mo_integrals_cache_min .. code:: text integer*4 :: mo_integrals_cache_min integer*4 :: mo_integrals_cache_max integer*8 :: mo_integrals_cache_min_8 integer*8 :: mo_integrals_cache_max_8 File: :file:`map_integrals.irp.f` Min and max values of the MOs for which the integrals are in the cache .. c:var:: mo_integrals_cache_min_8 .. code:: text integer*4 :: mo_integrals_cache_min integer*4 :: mo_integrals_cache_max integer*8 :: mo_integrals_cache_min_8 integer*8 :: mo_integrals_cache_max_8 File: :file:`map_integrals.irp.f` Min and max values of the MOs for which the integrals are in the cache .. c:var:: mo_integrals_map .. code:: text type(map_type) :: mo_integrals_map File: :file:`map_integrals.irp.f` MO integrals .. c:var:: mo_two_e_integral_jj_from_ao .. code:: text double precision, allocatable :: mo_two_e_integral_jj_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_exchange_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_anti_from_ao (mo_num,mo_num) File: :file:`mo_bi_integrals.irp.f` mo_two_e_integral_jj_from_ao(i,j) = J_ij mo_two_e_integrals_jj_exchange_from_ao(i,j) = J_ij mo_two_e_integrals_jj_anti_from_ao(i,j) = J_ij - K_ij .. c:var:: mo_two_e_integrals_in_map .. code:: text logical :: mo_two_e_integrals_in_map File: :file:`mo_bi_integrals.irp.f` If True, the map of MO two-electron integrals is provided .. c:var:: mo_two_e_integrals_jj .. code:: text double precision, allocatable :: mo_two_e_integrals_jj (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_exchange (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_anti (mo_num,mo_num) File: :file:`mo_bi_integrals.irp.f` mo_two_e_integrals_jj(i,j) = J_ij mo_two_e_integrals_jj_exchange(i,j) = K_ij mo_two_e_integrals_jj_anti(i,j) = J_ij - K_ij .. c:var:: mo_two_e_integrals_jj_anti .. code:: text double precision, allocatable :: mo_two_e_integrals_jj (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_exchange (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_anti (mo_num,mo_num) File: :file:`mo_bi_integrals.irp.f` mo_two_e_integrals_jj(i,j) = J_ij mo_two_e_integrals_jj_exchange(i,j) = K_ij mo_two_e_integrals_jj_anti(i,j) = J_ij - K_ij .. c:var:: mo_two_e_integrals_jj_anti_from_ao .. code:: text double precision, allocatable :: mo_two_e_integral_jj_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_exchange_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_anti_from_ao (mo_num,mo_num) File: :file:`mo_bi_integrals.irp.f` mo_two_e_integral_jj_from_ao(i,j) = J_ij mo_two_e_integrals_jj_exchange_from_ao(i,j) = J_ij mo_two_e_integrals_jj_anti_from_ao(i,j) = J_ij - K_ij .. c:var:: mo_two_e_integrals_jj_exchange .. code:: text double precision, allocatable :: mo_two_e_integrals_jj (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_exchange (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_anti (mo_num,mo_num) File: :file:`mo_bi_integrals.irp.f` mo_two_e_integrals_jj(i,j) = J_ij mo_two_e_integrals_jj_exchange(i,j) = K_ij mo_two_e_integrals_jj_anti(i,j) = J_ij - K_ij .. c:var:: mo_two_e_integrals_jj_exchange_from_ao .. code:: text double precision, allocatable :: mo_two_e_integral_jj_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_exchange_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_jj_anti_from_ao (mo_num,mo_num) File: :file:`mo_bi_integrals.irp.f` mo_two_e_integral_jj_from_ao(i,j) = J_ij mo_two_e_integrals_jj_exchange_from_ao(i,j) = J_ij mo_two_e_integrals_jj_anti_from_ao(i,j) = J_ij - K_ij .. c:var:: mo_two_e_integrals_vv_anti_from_ao .. code:: text double precision, allocatable :: mo_two_e_integrals_vv_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_vv_exchange_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_vv_anti_from_ao (mo_num,mo_num) File: :file:`mo_bi_integrals.irp.f` mo_two_e_integrals_vv_from_ao(i,j) = J_ij mo_two_e_integrals_vv_exchange_from_ao(i,j) = J_ij mo_two_e_integrals_vv_anti_from_ao(i,j) = J_ij - K_ij but only for the virtual orbitals .. c:var:: mo_two_e_integrals_vv_exchange_from_ao .. code:: text double precision, allocatable :: mo_two_e_integrals_vv_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_vv_exchange_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_vv_anti_from_ao (mo_num,mo_num) File: :file:`mo_bi_integrals.irp.f` mo_two_e_integrals_vv_from_ao(i,j) = J_ij mo_two_e_integrals_vv_exchange_from_ao(i,j) = J_ij mo_two_e_integrals_vv_anti_from_ao(i,j) = J_ij - K_ij but only for the virtual orbitals .. c:var:: mo_two_e_integrals_vv_from_ao .. code:: text double precision, allocatable :: mo_two_e_integrals_vv_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_vv_exchange_from_ao (mo_num,mo_num) double precision, allocatable :: mo_two_e_integrals_vv_anti_from_ao (mo_num,mo_num) File: :file:`mo_bi_integrals.irp.f` mo_two_e_integrals_vv_from_ao(i,j) = J_ij mo_two_e_integrals_vv_exchange_from_ao(i,j) = J_ij mo_two_e_integrals_vv_anti_from_ao(i,j) = J_ij - K_ij but only for the virtual orbitals Subroutines / functions ----------------------- .. c:function:: add_integrals_to_map .. code:: text subroutine add_integrals_to_map(mask_ijkl) File: :file:`mo_bi_integrals.irp.f` Adds integrals to tha MO map according to some bitmask .. c:function:: add_integrals_to_map_no_exit_34 .. code:: text subroutine add_integrals_to_map_no_exit_34(mask_ijkl) File: :file:`mo_bi_integrals.irp.f` Adds integrals to tha MO map according to some bitmask .. c:function:: add_integrals_to_map_three_indices .. code:: text subroutine add_integrals_to_map_three_indices(mask_ijk) File: :file:`mo_bi_integrals.irp.f` Adds integrals to tha MO map according to some bitmask .. c:function:: clear_mo_map .. code:: text subroutine clear_mo_map File: :file:`mo_bi_integrals.irp.f` Frees the memory of the MO map .. c:function:: dump_mo_integrals .. code:: text subroutine dump_mo_integrals(filename) File: :file:`map_integrals.irp.f` Save to disk the |MO| integrals .. c:function:: get_mo_map_size .. code:: text integer*8 function get_mo_map_size() File: :file:`map_integrals.irp.f` Return the number of elements in the MO map .. c:function:: get_mo_two_e_integrals .. code:: text subroutine get_mo_two_e_integrals(j,k,l,sze,out_val,map) File: :file:`map_integrals.irp.f` Returns multiple integrals in the MO basis, all i for j,k,l fixed. .. c:function:: get_mo_two_e_integrals_coulomb_ii .. code:: text subroutine get_mo_two_e_integrals_coulomb_ii(k,l,sze,out_val,map) File: :file:`map_integrals.irp.f` Returns multiple integrals k(1)i(2) 1/r12 l(1)i(2) :: out_val(i1) for k,l fixed. .. c:function:: get_mo_two_e_integrals_exch_ii .. code:: text subroutine get_mo_two_e_integrals_exch_ii(k,l,sze,out_val,map) File: :file:`map_integrals.irp.f` Returns multiple integrals k(1)i(2) 1/r12 i(1)l(2) :: out_val(i1) for k,l fixed. .. c:function:: get_mo_two_e_integrals_i1j1 .. code:: text subroutine get_mo_two_e_integrals_i1j1(k,l,sze,out_array,map) File: :file:`map_integrals.irp.f` Returns multiple integrals in the MO basis, all i(1)j(1) 1/r12 k(2)l(2) i, j for k,l fixed. .. c:function:: get_mo_two_e_integrals_ij .. code:: text subroutine get_mo_two_e_integrals_ij(k,l,sze,out_array,map) File: :file:`map_integrals.irp.f` Returns multiple integrals in the MO basis, all i(1)j(2) 1/r12 k(1)l(2) i, j for k,l fixed. .. c:function:: get_two_e_integral .. code:: text double precision function get_two_e_integral(i,j,k,l,map) File: :file:`map_integrals.irp.f` Returns one integral in the MO basis .. c:function:: load_mo_integrals .. code:: text integer function load_mo_integrals(filename) File: :file:`map_integrals.irp.f` Read from disk the |MO| integrals .. c:function:: mo_two_e_integral .. code:: text double precision function mo_two_e_integral(i,j,k,l) File: :file:`map_integrals.irp.f` Returns one integral in the MO basis .. c:function:: mo_two_e_integrals_index .. code:: text subroutine mo_two_e_integrals_index(i,j,k,l,i1) File: :file:`mo_bi_integrals.irp.f` Computes an unique index for i,j,k,l integrals