subroutine svd(A,LDA,U,LDU,D,Vt,LDVt,m,n) implicit none BEGIN_DOC ! Compute A = U.D.Vt ! ! LDx : leftmost dimension of x ! ! Dimsneion of A is m x n ! END_DOC integer, intent(in) :: LDA, LDU, LDVt, m, n double precision, intent(in) :: A(LDA,n) double precision, intent(out) :: U(LDU,m) double precision,intent(out) :: Vt(LDVt,n) double precision,intent(out) :: D(min(m,n)) double precision,allocatable :: work(:) integer :: info, lwork, i, j, k double precision,allocatable :: A_tmp(:,:) allocate (A_tmp(LDA,n)) A_tmp = A ! Find optimal size for temp arrays allocate(work(1)) lwork = -1 call dgesvd('A','A', m, n, A_tmp, LDA, & D, U, LDU, Vt, LDVt, work, lwork, info) lwork = int(work(1)) deallocate(work) allocate(work(lwork)) call dgesvd('A','A', m, n, A_tmp, LDA, & D, U, LDU, Vt, LDVt, work, lwork, info) deallocate(work,A_tmp) if (info /= 0) then print *, info, ': SVD failed' stop endif end subroutine ortho_canonical(overlap,LDA,N,C,LDC,m) implicit none BEGIN_DOC ! Compute C_new=C_old.U.s^-1/2 canonical orthogonalization. ! ! overlap : overlap matrix ! ! LDA : leftmost dimension of overlap array ! ! N : Overlap matrix is NxN (array is (LDA,N) ) ! ! C : Coefficients of the vectors to orthogonalize. On exit, ! orthogonal vectors ! ! LDC : leftmost dimension of C ! ! m : Coefficients matrix is MxN, ( array is (LDC,N) ) ! END_DOC integer, intent(in) :: lda, ldc, n integer, intent(out) :: m double precision, intent(in) :: overlap(lda,n) double precision, intent(inout) :: C(ldc,n) double precision, allocatable :: U(:,:) double precision, allocatable :: Vt(:,:) double precision, allocatable :: D(:) double precision, allocatable :: S_half(:,:) !DEC$ ATTRIBUTES ALIGN : 64 :: U, Vt, D integer :: info, i, j if (n < 2) then return endif allocate (U(ldc,n), Vt(lda,n), D(n), S_half(lda,n)) call svd(overlap,lda,U,ldc,D,Vt,lda,n,n) m=n do i=1,n if ( D(i) >= 1.d-6 ) then D(i) = 1.d0/dsqrt(D(i)) else m = i-1 print *, 'Removed Linear dependencies below:', 1.d0/D(m) exit endif enddo do i=m+1,n D(i) = 0.d0 enddo do i=1,m if ( D(i) >= 1.d5 ) then print *, 'Warning: Basis set may have linear dependence problems' endif enddo !$OMP PARALLEL DEFAULT(NONE) & !$OMP SHARED(S_half,U,D,Vt,n,C,m) & !$OMP PRIVATE(i,j) !$OMP DO do j=1,n do i=1,n S_half(i,j) = U(i,j)*D(j) enddo do i=1,n U(i,j) = C(i,j) enddo enddo !$OMP END DO !$OMP END PARALLEL call dgemm('N','N',n,m,n,1.d0,U,size(U,1),S_half,size(S_half,1),0.d0,C,size(C,1)) deallocate (U, Vt, D, S_half) end subroutine ortho_qr(A,LDA,m,n) implicit none BEGIN_DOC ! Orthogonalization using Q.R factorization ! ! A : matrix to orthogonalize ! ! LDA : leftmost dimension of A ! ! n : Number of rows of A ! ! m : Number of columns of A ! END_DOC integer, intent(in) :: m,n, LDA double precision, intent(inout) :: A(LDA,n) integer :: lwork, info integer, allocatable :: jpvt(:) double precision, allocatable :: tau(:), work(:) allocate (jpvt(n), tau(n), work(1)) LWORK=-1 call dgeqrf( m, n, A, LDA, TAU, WORK, LWORK, INFO ) LWORK=2*int(WORK(1)) deallocate(WORK) allocate(WORK(LWORK)) call dgeqrf(m, n, A, LDA, TAU, WORK, LWORK, INFO ) call dorgqr(m, n, n, A, LDA, tau, WORK, LWORK, INFO) deallocate(WORK,jpvt,tau) end subroutine ortho_qr_unblocked(A,LDA,m,n) implicit none BEGIN_DOC ! Orthogonalization using Q.R factorization ! ! A : matrix to orthogonalize ! ! LDA : leftmost dimension of A ! ! n : Number of rows of A ! ! m : Number of columns of A ! END_DOC integer, intent(in) :: m,n, LDA double precision, intent(inout) :: A(LDA,n) integer :: info integer, allocatable :: jpvt(:) double precision, allocatable :: tau(:), work(:) allocate (jpvt(n), tau(n), work(n)) call dgeqr2( m, n, A, LDA, TAU, WORK, INFO ) call dorg2r(m, n, n, A, LDA, tau, WORK, INFO) deallocate(WORK,jpvt,tau) end subroutine ortho_lowdin(overlap,LDA,N,C,LDC,m) implicit none BEGIN_DOC ! Compute C_new=C_old.S^-1/2 orthogonalization. ! ! overlap : overlap matrix ! ! LDA : leftmost dimension of overlap array ! ! N : Overlap matrix is NxN (array is (LDA,N) ) ! ! C : Coefficients of the vectors to orthogonalize. On exit, ! orthogonal vectors ! ! LDC : leftmost dimension of C ! ! M : Coefficients matrix is MxN, ( array is (LDC,N) ) ! END_DOC integer, intent(in) :: LDA, ldc, n, m double precision, intent(in) :: overlap(lda,n) double precision, intent(inout) :: C(ldc,n) double precision, allocatable :: U(:,:) double precision, allocatable :: Vt(:,:) double precision, allocatable :: D(:) double precision, allocatable :: S_half(:,:) integer :: info, i, j, k if (n < 2) then return endif allocate(U(ldc,n),Vt(lda,n),S_half(lda,n),D(n)) call svd(overlap,lda,U,ldc,D,Vt,lda,n,n) !$OMP PARALLEL DEFAULT(NONE) & !$OMP SHARED(S_half,U,D,Vt,n,C,m) & !$OMP PRIVATE(i,j,k) !$OMP DO do i=1,n if ( D(i) < 1.d-6 ) then D(i) = 0.d0 else D(i) = 1.d0/dsqrt(D(i)) endif do j=1,n S_half(j,i) = 0.d0 enddo enddo !$OMP END DO do k=1,n if (D(k) /= 0.d0) then !$OMP DO do j=1,n do i=1,n S_half(i,j) = S_half(i,j) + U(i,k)*D(k)*Vt(k,j) enddo enddo !$OMP END DO NOWAIT endif enddo !$OMP BARRIER !$OMP DO do j=1,n do i=1,m U(i,j) = C(i,j) enddo enddo !$OMP END DO !$OMP END PARALLEL call dgemm('N','N',m,n,n,1.d0,U,size(U,1),S_half,size(S_half,1),0.d0,C,size(C,1)) deallocate(U,Vt,S_half,D) end subroutine get_inverse(A,LDA,m,C,LDC) implicit none BEGIN_DOC ! Returns the inverse of the square matrix A END_DOC integer, intent(in) :: m, LDA, LDC double precision, intent(in) :: A(LDA,m) double precision, intent(out) :: C(LDC,m) integer :: info,lwork integer, allocatable :: ipiv(:) double precision,allocatable :: work(:) allocate (ipiv(ao_num), work(ao_num*ao_num)) lwork = size(work) C(1:m,1:m) = A(1:m,1:m) call dgetrf(m,m,C,size(C,1),ipiv,info) if (info /= 0) then print *, info stop 'error in inverse (dgetrf)' endif call dgetri(m,C,size(C,1),ipiv,work,lwork,info) if (info /= 0) then print *, info stop 'error in inverse (dgetri)' endif deallocate(ipiv,work) end subroutine get_pseudo_inverse(A,LDA,m,n,C,LDC) implicit none BEGIN_DOC ! Find C = A^-1 END_DOC integer, intent(in) :: m,n, LDA, LDC double precision, intent(in) :: A(LDA,n) double precision, intent(out) :: C(LDC,m) double precision, allocatable :: U(:,:), D(:), Vt(:,:), work(:), A_tmp(:,:) integer :: info, lwork integer :: i,j,k allocate (D(n),U(m,n),Vt(n,n),work(1),A_tmp(m,n)) do j=1,n do i=1,m A_tmp(i,j) = A(i,j) enddo enddo lwork = -1 call dgesvd('S','A', m, n, A_tmp, m,D,U,m,Vt,n,work,lwork,info) if (info /= 0) then print *, info, ': SVD failed' stop endif lwork = int(work(1)) deallocate(work) allocate(work(lwork)) call dgesvd('S','A', m, n, A_tmp, m,D,U,m,Vt,n,work,lwork,info) if (info /= 0) then print *, info, ':: SVD failed' stop 1 endif do i=1,n if (D(i)/D(1) > 1.d-10) then D(i) = 1.d0/D(i) else D(i) = 0.d0 endif enddo C = 0.d0 do i=1,m do j=1,n do k=1,n C(j,i) = C(j,i) + U(i,k) * D(k) * Vt(k,j) enddo enddo enddo deallocate(U,D,Vt,work,A_tmp) end subroutine find_rotation(A,LDA,B,m,C,n) implicit none BEGIN_DOC ! Find A.C = B END_DOC integer, intent(in) :: m,n, LDA double precision, intent(in) :: A(LDA,n), B(LDA,n) double precision, intent(out) :: C(n,n) double precision, allocatable :: A_inv(:,:) allocate(A_inv(LDA,n)) call get_pseudo_inverse(A,LDA,m,n,A_inv,LDA) integer :: i,j,k call dgemm('N','N',n,n,m,1.d0,A_inv,n,B,LDA,0.d0,C,n) deallocate(A_inv) end subroutine apply_rotation(A,LDA,R,LDR,B,LDB,m,n) implicit none BEGIN_DOC ! Apply the rotation found by find_rotation END_DOC integer, intent(in) :: m,n, LDA, LDB, LDR double precision, intent(in) :: R(LDR,n) double precision, intent(in) :: A(LDA,n) double precision, intent(out) :: B(LDB,n) call dgemm('N','N',m,n,n,1.d0,A,LDA,R,LDR,0.d0,B,LDB) end subroutine lapack_diagd(eigvalues,eigvectors,H,nmax,n) implicit none BEGIN_DOC ! Diagonalize matrix H ! ! H is untouched between input and ouptut ! ! eigevalues(i) = ith lowest eigenvalue of the H matrix ! ! eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector ! END_DOC integer, intent(in) :: n,nmax double precision, intent(out) :: eigvectors(nmax,n) double precision, intent(out) :: eigvalues(n) double precision, intent(in) :: H(nmax,n) double precision,allocatable :: eigenvalues(:) double precision,allocatable :: work(:) integer ,allocatable :: iwork(:) double precision,allocatable :: A(:,:) integer :: lwork, info, i,j,l,k, liwork allocate(A(nmax,n),eigenvalues(n)) ! print*,'Diagonalization by jacobi' ! print*,'n = ',n A=H lwork = 2*n*n + 6*n+ 1 liwork = 5*n + 3 allocate (work(lwork),iwork(liwork)) lwork = -1 liwork = -1 call DSYEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & iwork, liwork, info ) if (info < 0) then print *, irp_here, ': DSYEVD: the ',-info,'-th argument had an illegal value' stop 2 endif lwork = int( work( 1 ) ) liwork = iwork(1) deallocate (work,iwork) allocate (work(lwork),iwork(liwork)) call DSYEVD( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & iwork, liwork, info ) deallocate(work,iwork) if (info < 0) then print *, irp_here, ': DSYEVD: the ',-info,'-th argument had an illegal value' stop 2 else if( info > 0 ) then write(*,*)'DSYEVD Failed' stop 1 end if eigvectors = 0.d0 eigvalues = 0.d0 do j = 1, n eigvalues(j) = eigenvalues(j) do i = 1, n eigvectors(i,j) = A(i,j) enddo enddo deallocate(A,eigenvalues) end subroutine lapack_diag(eigvalues,eigvectors,H,nmax,n) implicit none BEGIN_DOC ! Diagonalize matrix H ! ! H is untouched between input and ouptut ! ! eigevalues(i) = ith lowest eigenvalue of the H matrix ! ! eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector ! END_DOC integer, intent(in) :: n,nmax double precision, intent(out) :: eigvectors(nmax,n) double precision, intent(out) :: eigvalues(n) double precision, intent(in) :: H(nmax,n) double precision,allocatable :: eigenvalues(:) double precision,allocatable :: work(:) double precision,allocatable :: A(:,:) integer :: lwork, info, i,j,l,k, liwork allocate(A(nmax,n),eigenvalues(n)) ! print*,'Diagonalization by jacobi' ! print*,'n = ',n A=H lwork = 2*n*n + 6*n+ 1 allocate (work(lwork)) lwork = -1 call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & info ) if (info < 0) then print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value' stop 2 endif lwork = int( work( 1 ) ) deallocate (work) allocate (work(lwork)) call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & info ) deallocate(work) if (info < 0) then print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value' stop 2 else if( info > 0 ) then write(*,*)'DSYEV Failed : ', info do i=1,n do j=1,n print *, H(i,j) enddo enddo stop 1 end if eigvectors = 0.d0 eigvalues = 0.d0 do j = 1, n eigvalues(j) = eigenvalues(j) do i = 1, n eigvectors(i,j) = A(i,j) enddo enddo deallocate(A,eigenvalues) end subroutine lapack_diag_s2(eigvalues,eigvectors,H,nmax,n) implicit none BEGIN_DOC ! Diagonalize matrix H ! ! H is untouched between input and ouptut ! ! eigevalues(i) = ith lowest eigenvalue of the H matrix ! ! eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector ! END_DOC integer, intent(in) :: n,nmax double precision, intent(out) :: eigvectors(nmax,n) double precision, intent(out) :: eigvalues(n) double precision, intent(in) :: H(nmax,n) double precision,allocatable :: eigenvalues(:) double precision,allocatable :: work(:) double precision,allocatable :: A(:,:) integer :: lwork, info, i,j,l,k, liwork allocate(A(nmax,n),eigenvalues(n)) ! print*,'Diagonalization by jacobi' ! print*,'n = ',n A=H lwork = 2*n*n + 6*n+ 1 allocate (work(lwork)) lwork = -1 call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & info ) if (info < 0) then print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value' stop 2 endif lwork = int( work( 1 ) ) deallocate (work) allocate (work(lwork)) call DSYEV( 'V', 'U', n, A, nmax, eigenvalues, work, lwork, & info ) deallocate(work) if (info < 0) then print *, irp_here, ': DSYEV: the ',-info,'-th argument had an illegal value' stop 2 else if( info > 0 ) then write(*,*)'DSYEV Failed' stop 1 end if eigvectors = 0.d0 eigvalues = 0.d0 do j = 1, n eigvalues(j) = eigenvalues(j) do i = 1, n eigvectors(i,j) = A(i,j) enddo enddo deallocate(A,eigenvalues) end subroutine lapack_partial_diag(eigvalues,eigvectors,H,nmax,n,n_st) implicit none BEGIN_DOC ! Diagonalize matrix H ! ! H is untouched between input and ouptut ! ! eigevalues(i) = ith lowest eigenvalue of the H matrix ! ! eigvectors(i,j) = where i is the basis function and psi_j is the j th eigenvector ! END_DOC integer, intent(in) :: n,nmax,n_st double precision, intent(out) :: eigvectors(nmax,n) double precision, intent(out) :: eigvalues(n) double precision, intent(in) :: H(nmax,n) double precision,allocatable :: work(:) integer ,allocatable :: iwork(:), isuppz(:) double precision,allocatable :: A(:,:) integer :: lwork, info, i,j,l,k,m, liwork allocate(A(nmax,n)) A=H lwork = 2*n*n + 6*n+ 1 liwork = 5*n + 3 allocate (work(lwork),iwork(liwork),isuppz(2*N_st)) lwork = -1 liwork = -1 call DSYEVR( 'V', 'I', 'U', n, A, nmax, 0.d0, 0.d0, 1, n_st, 1.d-10, m, eigvalues, eigvectors, nmax, isuppz, work, lwork, & iwork, liwork, info ) if (info < 0) then print *, irp_here, ': DSYEVR: the ',-info,'-th argument had an illegal value' stop 2 endif lwork = int( work( 1 ) ) liwork = iwork(1) deallocate (work,iwork) allocate (work(lwork),iwork(liwork)) call DSYEVR( 'V', 'I', 'U', n, A, nmax, 0.d0, 0.d0, 1, n_st, 1.d-10, m, eigvalues, eigvectors, nmax, isuppz, work, lwork, & iwork, liwork, info ) deallocate(work,iwork) if (info < 0) then print *, irp_here, ': DSYEVR: the ',-info,'-th argument had an illegal value' stop 2 else if( info > 0 ) then write(*,*)'DSYEVR Failed' stop 1 end if deallocate(A) end subroutine set_zero_extra_diag(i1,i2,matrix,lda,m) implicit none integer, intent(in) :: i1,i2,lda,m double precision, intent(inout) :: matrix(lda,m) integer :: i,j do j=i1,i2 do i = 1,i1-1 matrix(i,j) = 0.d0 matrix(j,i) = 0.d0 enddo enddo do i = i2,i1 do j=i2+1,m matrix(i,j) = 0.d0 matrix(j,i) = 0.d0 enddo enddo end subroutine matrix_vector_product(u0,u1,matrix,sze,lda) implicit none BEGIN_DOC ! performs u1 += u0 * matrix END_DOC integer, intent(in) :: sze,lda double precision, intent(in) :: u0(sze) double precision, intent(inout) :: u1(sze) double precision, intent(in) :: matrix(lda,sze) integer :: i,j integer :: incx,incy incx = 1 incy = 1 call dsymv('U', sze, 1.d0, matrix, lda, u0, incx, 1.d0, u1, incy) end