BEGIN_PROVIDER [integer, pert_determinants, (N_states, psi_det_size) ] END_PROVIDER BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states,psi_det_size) ] &BEGIN_PROVIDER [ double precision, lambda_pert, (N_states,psi_det_size) ] implicit none BEGIN_DOC ! cm/ or perturbative 1/Delta_E(m) END_DOC integer :: i,k,j double precision :: ihpsi(N_states), hii,delta_e_eff,ihpsi_current(N_states),hij integer :: i_ok,i_pert,i_pert_count i_ok = 0 double precision :: phase_restart(N_states),tmp do k = 1, N_states phase_restart(k) = dsign(1.d0,psi_ref_coef_restart(1,k)/psi_ref_coef(1,k)) enddo i_pert_count = 0 do i=1,N_det_non_ref call i_h_psi(psi_non_ref(1,1,i), psi_ref_restart, psi_ref_coef_restart, N_int, N_det_ref,& size(psi_ref_coef_restart,1), n_states, ihpsi) call i_H_j(psi_non_ref(1,1,i),psi_non_ref(1,1,i),N_int,hii) ! TODO --- Test perturbatif ------ do k=1,N_states lambda_pert(k,i) = 1.d0 / (psi_ref_energy_diagonalized(k)-hii) call i_h_psi(psi_non_ref(1,1,i), psi_ref, psi_ref_coef, N_int, N_det_ref,size(psi_ref_coef,1), n_states, ihpsi_current) tmp = psi_non_ref_coef(i,k)/ihpsi_current(k) i_pert = 0 ! Perturbation only if 1st order < 0.5 x second order if((ihpsi(k) * lambda_pert(k,i)) < 0.5d0 * psi_non_ref_coef_restart(i,k) )then i_pert = 1 else do j = 1, N_det_ref call i_H_j(psi_non_ref(1,1,i),psi_ref(1,1,j),N_int,hij) ! Perturbation diverges when hij*tmp > 0.5 if(dabs(hij * tmp).ge.0.5d0)then i_pert_count +=1 i_pert = 1 exit endif enddo endif if( i_pert == 1)then pert_determinants(k,i) = i_pert endif if(pert_determinants(k,i) == 1)then i_ok +=1 lambda_mrcc(k,i) = lambda_pert(k,i) else lambda_mrcc(k,i) = psi_non_ref_coef(i,k)/ihpsi_current(k) endif enddo ! TODO --- Fin test perturbatif ------ enddo !if(oscillations)then ! print*,'AVERAGING the lambda_mrcc with those of the previous iterations' ! do i = 1, N_det_non_ref ! do k = 1, N_states ! double precision :: tmp ! tmp = lambda_mrcc(k,i) ! lambda_mrcc(k,i) += lambda_mrcc_tmp(k,i) ! lambda_mrcc(k,i) = lambda_mrcc(k,i) * 0.5d0 ! if(dabs(tmp - lambda_mrcc(k,i)).ge.1.d-9)then ! print*,'' ! print*,'i = ',i ! print*,'psi_non_ref_coef(i,k) = ',psi_non_ref_coef(i,k) ! print*,'lambda_mrcc(k,i) = ',lambda_mrcc(k,i) ! print*,' tmp = ',tmp ! endif ! enddo ! enddo !endif print*,'N_det_non_ref = ',N_det_non_ref print*,'Number of Perturbatively treated determinants = ',i_ok print*,'i_pert_count = ',i_pert_count print*,'psi_coef_ref_ratio = ',psi_ref_coef(2,1)/psi_ref_coef(1,1) END_PROVIDER BEGIN_PROVIDER [ double precision, lambda_mrcc_tmp, (N_states,psi_det_size) ] implicit none lambda_mrcc_tmp = 0.d0 END_PROVIDER BEGIN_PROVIDER [ logical, oscillations ] implicit none oscillations = .False. END_PROVIDER !BEGIN_PROVIDER [ double precision, delta_ij_non_ref, (N_det_non_ref, N_det_non_ref,N_states) ] !implicit none !BEGIN_DOC !! Dressing matrix in SD basis !END_DOC !delta_ij_non_ref = 0.d0 !call H_apply_mrcc_simple(delta_ij_non_ref,N_det_non_ref) !END_PROVIDER BEGIN_PROVIDER [ double precision, delta_ij, (N_det_ref,N_det_non_ref,N_states) ] &BEGIN_PROVIDER [ double precision, delta_ii, (N_det_ref,N_states) ] implicit none BEGIN_DOC ! Dressing matrix in N_det basis END_DOC integer :: i,j,m delta_ij = 0.d0 delta_ii = 0.d0 call H_apply_mrcc(delta_ij,delta_ii,N_det_ref,N_det_non_ref) double precision :: max_delta double precision :: accu integer :: imax,jmax max_delta = 0.d0 accu = 0.d0 do i = 1, N_det_ref do j = 1, N_det_non_ref accu += psi_non_ref_coef(j,1) * psi_ref_coef(i,1) * delta_ij(i,j,1) if(dabs(delta_ij(i,j,1)).gt.max_delta)then max_delta = dabs(delta_ij(i,j,1)) imax = i jmax = j endif enddo enddo print*,'' print*,'' print*,' = ',accu print*,'MAX VAL OF DRESING = ',delta_ij(imax,jmax,1) print*,'imax,jmax = ',imax,jmax print*,'psi_ref_coef(imax,1) = ',psi_ref_coef(imax,1) print*,'psi_non_ref_coef(jmax,1) = ',psi_non_ref_coef(jmax,1) do i = 1, N_det_ref print*,'delta_ii(i,1) = ',delta_ii(i,1) enddo END_PROVIDER BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det,N_states) ] implicit none BEGIN_DOC ! Dressed H with Delta_ij END_DOC integer :: i, j,istate,ii,jj do istate = 1,N_states do j=1,N_det do i=1,N_det h_matrix_dressed(i,j,istate) = h_matrix_all_dets(i,j) enddo enddo do ii = 1, N_det_ref i =idx_ref(ii) h_matrix_dressed(i,i,istate) += delta_ii(ii,istate) do jj = 1, N_det_non_ref j =idx_non_ref(jj) h_matrix_dressed(i,j,istate) += delta_ij(ii,jj,istate) h_matrix_dressed(j,i,istate) += delta_ij(ii,jj,istate) enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ] implicit none BEGIN_DOC ! Eigenvectors/values of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det CI_eigenvectors_dressed(i,j) = psi_coef(i,j) enddo enddo if (diag_algorithm == "Davidson") then integer :: istate istate = 1 call davidson_diag_mrcc(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed,& size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants,istate) else if (diag_algorithm == "Lapack") then double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) allocate (eigenvectors(size(H_matrix_dressed,1),N_det)) allocate (eigenvalues(N_det)) call lapack_diag(eigenvalues,eigenvectors, & H_matrix_dressed,size(H_matrix_dressed,1),N_det) CI_electronic_energy_dressed(:) = 0.d0 do i=1,N_det CI_eigenvectors_dressed(i,1) = eigenvectors(i,1) enddo integer :: i_state double precision :: s2 i_state = 0 if (s2_eig) then do j=1,N_det call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) if(dabs(s2-expected_s2).le.0.3d0)then i_state += 1 do i=1,N_det CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(i_state) = eigenvalues(j) CI_eigenvectors_s2_dressed(i_state) = s2 endif if (i_state.ge.N_states_diag) then exit endif enddo else do j=1,N_states_diag call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) i_state += 1 do i=1,N_det CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(i_state) = eigenvalues(j) CI_eigenvectors_s2_dressed(i_state) = s2 enddo endif deallocate(eigenvectors,eigenvalues) endif END_PROVIDER BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ] implicit none BEGIN_DOC ! N_states lowest eigenvalues of the dressed CI matrix END_DOC integer :: j character*(8) :: st call write_time(output_determinants) do j=1,N_states_diag CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion enddo END_PROVIDER subroutine diagonalize_CI_dressed implicit none BEGIN_DOC ! Replace the coefficients of the CI states by the coefficients of the ! eigenstates of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det psi_coef(i,j) = CI_eigenvectors_dressed(i,j) enddo enddo SOFT_TOUCH psi_coef end