BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha_average, (mo_tot_num_align,mo_tot_num) ] &BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta_average, (mo_tot_num_align,mo_tot_num) ] implicit none BEGIN_DOC ! Alpha and beta one-body density matrix for each state END_DOC integer :: i one_body_dm_mo_alpha_average = 0.d0 one_body_dm_mo_beta_average = 0.d0 do i = 1,N_states one_body_dm_mo_alpha_average(:,:) += one_body_dm_mo_alpha(:,:,i) * state_average_weight(i) one_body_dm_mo_beta_average(:,:) += one_body_dm_mo_beta(:,:,i) * state_average_weight(i) enddo END_PROVIDER BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha, (mo_tot_num_align,mo_tot_num,N_states) ] &BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta, (mo_tot_num_align,mo_tot_num,N_states) ] implicit none BEGIN_DOC ! Alpha and beta one-body density matrix for each state END_DOC integer :: j,k,l,m integer :: occ(N_int*bit_kind_size,2) double precision :: ck, cl, ckl double precision :: phase integer :: h1,h2,p1,p2,s1,s2, degree integer(bit_kind) :: tmp_det(N_int,2), tmp_det2(N_int) integer :: exc(0:2,2),n_occ(2) double precision, allocatable :: tmp_a(:,:,:), tmp_b(:,:,:) integer :: krow, kcol, lrow, lcol PROVIDE psi_det one_body_dm_mo_alpha = 0.d0 one_body_dm_mo_beta = 0.d0 !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, & !$OMP tmp_a, tmp_b, n_occ, krow, kcol, lrow, lcol, tmp_det, tmp_det2)& !$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num,& !$OMP elec_beta_num,one_body_dm_mo_alpha,one_body_dm_mo_beta,N_det,mo_tot_num_align,& !$OMP mo_tot_num,psi_bilinear_matrix_rows,psi_bilinear_matrix_columns, & !$OMP psi_bilinear_matrix_transp_rows, psi_bilinear_matrix_transp_columns, & !$OMP psi_bilinear_matrix_order_reverse, psi_det_alpha_unique, psi_det_beta_unique, & !$OMP psi_bilinear_matrix_values, psi_bilinear_matrix_transp_values) allocate(tmp_a(mo_tot_num_align,mo_tot_num,N_states), tmp_b(mo_tot_num_align,mo_tot_num,N_states) ) tmp_a = 0.d0 tmp_b = 0.d0 !$OMP DO SCHEDULE(guided) do k=1,N_det krow = psi_bilinear_matrix_rows(k) kcol = psi_bilinear_matrix_columns(k) tmp_det(:,1) = psi_det_alpha_unique(:,krow) tmp_det(:,2) = psi_det_beta_unique (:,kcol) call bitstring_to_list_ab(tmp_det, occ, n_occ, N_int) do m=1,N_states ck = psi_bilinear_matrix_values(k,m)*psi_bilinear_matrix_values(k,m) do l=1,elec_alpha_num j = occ(l,1) tmp_a(j,j,m) += ck enddo do l=1,elec_beta_num j = occ(l,2) tmp_b(j,j,m) += ck enddo enddo l = k+1 lrow = psi_bilinear_matrix_rows(l) lcol = psi_bilinear_matrix_columns(l) ! Fix beta determinant, loop over alphas do while ( lcol == kcol ) tmp_det2(:) = psi_det_alpha_unique(:, lrow) call get_excitation_degree_spin(tmp_det(1,1),tmp_det2,degree,N_int) if (degree == 1) then exc = 0 call get_mono_excitation_spin(tmp_det(1,1),tmp_det2,exc,phase,N_int) call decode_exc_spin(exc,h1,p1,h2,p2) do m=1,N_states ckl = psi_bilinear_matrix_values(k,m)*psi_bilinear_matrix_values(l,m) * phase tmp_a(h1,p1,m) += ckl tmp_a(p1,h1,m) += ckl enddo endif l = l+1 if (l>N_det) exit lrow = psi_bilinear_matrix_rows(l) lcol = psi_bilinear_matrix_columns(l) enddo l = psi_bilinear_matrix_order_reverse(k)+1 ! Fix alpha determinant, loop over betas lrow = psi_bilinear_matrix_transp_rows(l) lcol = psi_bilinear_matrix_transp_columns(l) do while ( lrow == krow ) tmp_det2(:) = psi_det_beta_unique (:, lcol) call get_excitation_degree_spin(tmp_det(1,2),tmp_det2,degree,N_int) if (degree == 1) then call get_mono_excitation_spin(tmp_det(1,2),tmp_det2,exc,phase,N_int) call decode_exc_spin(exc,h1,p1,h2,p2) do m=1,N_states ckl = psi_bilinear_matrix_values(k,m)*psi_bilinear_matrix_transp_values(l,m) * phase tmp_b(h1,p1,m) += ckl tmp_b(p1,h1,m) += ckl enddo endif l = l+1 if (l>N_det) exit lrow = psi_bilinear_matrix_transp_rows(l) lcol = psi_bilinear_matrix_transp_columns(l) enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL one_body_dm_mo_alpha(:,:,:) = one_body_dm_mo_alpha(:,:,:) + tmp_a(:,:,:) !$OMP END CRITICAL !$OMP CRITICAL one_body_dm_mo_beta(:,:,:) = one_body_dm_mo_beta(:,:,:) + tmp_b(:,:,:) !$OMP END CRITICAL deallocate(tmp_a,tmp_b) !$OMP END PARALLEL END_PROVIDER BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_alpha, (mo_tot_num_align,mo_tot_num) ] &BEGIN_PROVIDER [ double precision, one_body_single_double_dm_mo_beta, (mo_tot_num_align,mo_tot_num) ] implicit none BEGIN_DOC ! Alpha and beta one-body density matrix for each state END_DOC integer :: j,k,l,m integer :: occ(N_int*bit_kind_size,2) double precision :: ck, cl, ckl double precision :: phase integer :: h1,h2,p1,p2,s1,s2, degree integer :: exc(0:2,2,2),n_occ_alpha double precision, allocatable :: tmp_a(:,:), tmp_b(:,:) integer :: degree_respect_to_HF_k integer :: degree_respect_to_HF_l PROVIDE elec_alpha_num elec_beta_num one_body_single_double_dm_mo_alpha = 0.d0 one_body_single_double_dm_mo_beta = 0.d0 !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, & !$OMP tmp_a, tmp_b, n_occ_alpha,degree_respect_to_HF_k,degree_respect_to_HF_l)& !$OMP SHARED(ref_bitmask,psi_det,psi_coef,N_int,N_states,state_average_weight,elec_alpha_num,& !$OMP elec_beta_num,one_body_single_double_dm_mo_alpha,one_body_single_double_dm_mo_beta,N_det,mo_tot_num_align,& !$OMP mo_tot_num) allocate(tmp_a(mo_tot_num_align,mo_tot_num), tmp_b(mo_tot_num_align,mo_tot_num) ) tmp_a = 0.d0 tmp_b = 0.d0 !$OMP DO SCHEDULE(dynamic) do k=1,N_det call bitstring_to_list(psi_det(1,1,k), occ(1,1), n_occ_alpha, N_int) call bitstring_to_list(psi_det(1,2,k), occ(1,2), n_occ_alpha, N_int) call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_k,N_int) do m=1,N_states ck = psi_coef(k,m)*psi_coef(k,m) * state_average_weight(m) call get_excitation_degree(ref_bitmask,psi_det(1,1,k),degree_respect_to_HF_l,N_int) if(degree_respect_to_HF_l.le.0)then do l=1,elec_alpha_num j = occ(l,1) tmp_a(j,j) += ck enddo do l=1,elec_beta_num j = occ(l,2) tmp_b(j,j) += ck enddo endif enddo do l=1,k-1 call get_excitation_degree(ref_bitmask,psi_det(1,1,l),degree_respect_to_HF_l,N_int) if(degree_respect_to_HF_k.ne.0)cycle if(degree_respect_to_HF_l.eq.2.and.degree_respect_to_HF_k.ne.2)cycle call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int) if (degree /= 1) then cycle endif call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int) call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) do m=1,N_states ckl = psi_coef(k,m) * psi_coef(l,m) * phase * state_average_weight(m) if (s1==1) then tmp_a(h1,p1) += ckl tmp_a(p1,h1) += ckl else tmp_b(h1,p1) += ckl tmp_b(p1,h1) += ckl endif enddo enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL one_body_single_double_dm_mo_alpha = one_body_single_double_dm_mo_alpha + tmp_a !$OMP END CRITICAL !$OMP CRITICAL one_body_single_double_dm_mo_beta = one_body_single_double_dm_mo_beta + tmp_b !$OMP END CRITICAL deallocate(tmp_a,tmp_b) !$OMP END PARALLEL END_PROVIDER BEGIN_PROVIDER [ double precision, one_body_dm_mo, (mo_tot_num_align,mo_tot_num) ] implicit none BEGIN_DOC ! One-body density matrix END_DOC one_body_dm_mo = one_body_dm_mo_alpha_average + one_body_dm_mo_beta_average END_PROVIDER BEGIN_PROVIDER [ double precision, one_body_spin_density_mo, (mo_tot_num_align,mo_tot_num) ] implicit none BEGIN_DOC ! rho(alpha) - rho(beta) END_DOC one_body_spin_density_mo = one_body_dm_mo_alpha_average - one_body_dm_mo_beta_average END_PROVIDER subroutine set_natural_mos implicit none BEGIN_DOC ! Set natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis END_DOC character*(64) :: label double precision, allocatable :: tmp(:,:) label = "Natural" call mo_as_svd_vectors_of_mo_matrix(one_body_dm_mo,size(one_body_dm_mo,1),mo_tot_num,mo_tot_num,label) end subroutine save_natural_mos implicit none BEGIN_DOC ! Save natural orbitals, obtained by diagonalization of the one-body density matrix in the MO basis END_DOC call set_natural_mos call save_mos end BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ] implicit none BEGIN_DOC ! Weights in the state-average calculation of the density matrix END_DOC state_average_weight = 1.d0/dble(N_states) END_PROVIDER BEGIN_PROVIDER [ double precision, one_body_spin_density_ao, (ao_num_align,ao_num) ] BEGIN_DOC ! one body spin density matrix on the AO basis : rho_AO(alpha) - rho_AO(beta) END_DOC implicit none integer :: i,j,k,l double precision :: dm_mo one_body_spin_density_ao = 0.d0 do k = 1, ao_num do l = 1, ao_num do i = 1, mo_tot_num do j = 1, mo_tot_num dm_mo = one_body_spin_density_mo(j,i) ! if(dabs(dm_mo).le.1.d-10)cycle one_body_spin_density_ao(l,k) += mo_coef(k,i) * mo_coef(l,j) * dm_mo enddo enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, one_body_dm_ao_alpha, (ao_num_align,ao_num) ] &BEGIN_PROVIDER [ double precision, one_body_dm_ao_beta, (ao_num_align,ao_num) ] BEGIN_DOC ! one body density matrix on the AO basis : rho_AO(alpha) , rho_AO(beta) END_DOC implicit none integer :: i,j,k,l double precision :: mo_alpha,mo_beta one_body_dm_ao_alpha = 0.d0 one_body_dm_ao_beta = 0.d0 do k = 1, ao_num do l = 1, ao_num do i = 1, mo_tot_num do j = 1, mo_tot_num mo_alpha = one_body_dm_mo_alpha_average(j,i) mo_beta = one_body_dm_mo_beta_average(j,i) ! if(dabs(dm_mo).le.1.d-10)cycle one_body_dm_ao_alpha(l,k) += mo_coef(k,i) * mo_coef(l,j) * mo_alpha one_body_dm_ao_beta(l,k) += mo_coef(k,i) * mo_coef(l,j) * mo_beta enddo enddo enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, one_body_dm_mo_alpha_old, (mo_tot_num_align,mo_tot_num,N_states) ] &BEGIN_PROVIDER [ double precision, one_body_dm_mo_beta_old, (mo_tot_num_align,mo_tot_num,N_states) ] implicit none BEGIN_DOC ! Alpha and beta one-body density matrix for each state END_DOC integer :: j,k,l,m integer :: occ(N_int*bit_kind_size,2) double precision :: ck, cl, ckl double precision :: phase integer :: h1,h2,p1,p2,s1,s2, degree integer :: exc(0:2,2,2),n_occ(2) double precision, allocatable :: tmp_a(:,:,:), tmp_b(:,:,:) one_body_dm_mo_alpha_old = 0.d0 one_body_dm_mo_beta_old = 0.d0 !$OMP PARALLEL DEFAULT(NONE) & !$OMP PRIVATE(j,k,l,m,occ,ck, cl, ckl,phase,h1,h2,p1,p2,s1,s2, degree,exc, & !$OMP tmp_a, tmp_b, n_occ)& !$OMP SHARED(psi_det,psi_coef,N_int,N_states,elec_alpha_num,& !$OMP elec_beta_num,one_body_dm_mo_alpha_old,one_body_dm_mo_beta_old,N_det,mo_tot_num_align,& !$OMP mo_tot_num) allocate(tmp_a(mo_tot_num_align,mo_tot_num,N_states), tmp_b(mo_tot_num_align,mo_tot_num,N_states) ) tmp_a = 0.d0 tmp_b = 0.d0 !$OMP DO SCHEDULE(dynamic) do k=1,N_det call bitstring_to_list_ab(psi_det(1,1,k), occ, n_occ, N_int) do m=1,N_states ck = psi_coef(k,m)*psi_coef(k,m) do l=1,elec_alpha_num j = occ(l,1) tmp_a(j,j,m) += ck enddo do l=1,elec_beta_num j = occ(l,2) tmp_b(j,j,m) += ck enddo enddo do l=1,k-1 call get_excitation_degree(psi_det(1,1,k),psi_det(1,1,l),degree,N_int) if (degree /= 1) then cycle endif call get_mono_excitation(psi_det(1,1,k),psi_det(1,1,l),exc,phase,N_int) call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) do m=1,N_states ckl = psi_coef(k,m) * psi_coef(l,m) * phase if (s1==1) then tmp_a(h1,p1,m) += ckl tmp_a(p1,h1,m) += ckl else tmp_b(h1,p1,m) += ckl tmp_b(p1,h1,m) += ckl endif enddo enddo enddo !$OMP END DO NOWAIT !$OMP CRITICAL one_body_dm_mo_alpha_old(:,:,:) = one_body_dm_mo_alpha_old(:,:,:) + tmp_a(:,:,:) !$OMP END CRITICAL !$OMP CRITICAL one_body_dm_mo_beta_old(:,:,:) = one_body_dm_mo_beta_old(:,:,:) + tmp_b(:,:,:) !$OMP END CRITICAL deallocate(tmp_a,tmp_b) !$OMP END PARALLEL END_PROVIDER