BEGIN_PROVIDER [ double precision, CI_electronic_energy_mono, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_mono, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_mono, (N_states_diag) ] implicit none BEGIN_DOC ! Eigenvectors/values of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det CI_eigenvectors_mono(i,j) = psi_coef(i,j) enddo enddo if (diag_algorithm == "Davidson") then call davidson_diag(psi_det,CI_eigenvectors_mono,CI_electronic_energy, & size(CI_eigenvectors_mono,1),N_det,N_states_diag,N_int,output_determinants) else if (diag_algorithm == "Lapack") then double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) allocate (eigenvalues(N_det)) call lapack_diag(eigenvalues,eigenvectors, & H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) CI_electronic_energy_mono(:) = 0.d0 do i=1,N_det CI_eigenvectors_mono(i,1) = eigenvectors(i,1) enddo integer :: i_state double precision :: s2 i_state = 0 do j=1,N_det call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) if(dabs(s2-expected_s2).le.0.3d0)then print*,'j = ',j print*,'e = ',eigenvalues(j) print*,'c = ',dabs(eigenvectors(1,j)) if(dabs(eigenvectors(1,j)).gt.0.9d0)then i_state += 1 do i=1,N_det CI_eigenvectors_mono(i,i_state) = eigenvectors(i,j) enddo CI_electronic_energy_mono(i_state) = eigenvalues(j) CI_eigenvectors_s2_mono(i_state) = s2 endif endif if (i_state.ge.N_states_diag) then exit endif enddo deallocate(eigenvectors,eigenvalues) endif END_PROVIDER subroutine diagonalize_CI_mono implicit none BEGIN_DOC ! Replace the coefficients of the CI states by the coefficients of the ! eigenstates of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det psi_coef(i,j) = CI_eigenvectors_mono(i,j) enddo enddo SOFT_TOUCH psi_coef CI_electronic_energy_mono CI_eigenvectors_mono CI_eigenvectors_s2_mono end