subroutine mrcc_dress(delta_ij_,Ndet,i_generator,n_selected,det_buffer,Nint,iproc) use bitmasks implicit none integer, intent(in) :: i_generator,n_selected, Nint, iproc integer, intent(in) :: Ndet double precision, intent(inout) :: delta_ij_(Ndet,Ndet,*) integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) integer :: i,j,k,l,m logical :: is_in_wavefunction integer :: degree_alpha(psi_det_size) integer :: degree_I(psi_det_size) integer :: idx_I(0:psi_det_size) integer :: idx_alpha(0:psi_det_size) logical :: good integer(bit_kind) :: tq(Nint,2,n_selected) integer :: N_tq, c_ref ,degree integer :: connected_to_ref call find_triples_and_quadruples(i_generator,n_selected,det_buffer,Nint,tq,N_tq) double precision :: hIk, hIl, hla, dIk(N_states), dka(N_states), dIa(N_states) double precision :: haj, phase, phase2 double precision :: f(N_states), ci_inv(N_states) integer :: exc(0:2,2,2) integer :: h1,h2,p1,p2,s1,s2 integer(bit_kind):: tmp_det(Nint,2) integer :: iint, ipos ! integer :: istate, i_sd, i_cas ! |I> ! |alpha> do i=1,N_tq call get_excitation_degree_vector(psi_sd,tq(1,1,i),degree_alpha,Nint,N_det_sd,idx_alpha) ! |I> do j=1,N_det_cas ! Find triples and quadruple grand parents call get_excitation_degree(tq(1,1,i),psi_cas(1,1,j),degree,Nint) if (degree > 4) then cycle endif dIa(:) = 0.d0 ! |alpha> do k=1,idx_alpha(0) call get_excitation_degree(psi_cas(1,1,j),psi_sd(1,1,idx_alpha(k)),degree,Nint) if (degree > 2) then cycle endif ! ! call i_h_j(psi_cas(1,1,j),psi_sd(1,1,idx_alpha(k)),Nint,hIk) dIk(:) = hIk * lambda_mrcc(idx_alpha(k),:) ! Exc(k -> alpha) call get_excitation(psi_sd(1,1,idx_alpha(k)),tq(1,1,i),exc,degree,phase,Nint) call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2) tmp_det(1:Nint,1:2) = psi_cas(1,1,j) ! Hole (see list_to_bitstring) iint = ishft(h1-1,-bit_kind_shift) + 1 ipos = h1-ishft((iint-1),bit_kind_shift)-1 tmp_det(iint,s1) = ibclr(tmp_det(iint,s1),ipos) ! Particle iint = ishft(p1-1,-bit_kind_shift) + 1 ipos = p1-ishft((iint-1),bit_kind_shift)-1 tmp_det(iint,s1) = ibset(tmp_det(iint,s1),ipos) if (degree == 2) then ! Hole (see list_to_bitstring) iint = ishft(h2-1,-bit_kind_shift) + 1 ipos = h2-ishft((iint-1),bit_kind_shift)-1 tmp_det(iint,s2) = ibclr(tmp_det(iint,s2),ipos) ! Particle iint = ishft(p2-1,-bit_kind_shift) + 1 ipos = p2-ishft((iint-1),bit_kind_shift)-1 tmp_det(iint,s2) = ibset(tmp_det(iint,s2),ipos) endif dka(:) = 0.d0 do l=k+1,idx_alpha(0) call get_excitation_degree(tmp_det,psi_sd(1,1,idx_alpha(l)),degree,Nint) if (degree == 0) then call get_excitation(psi_cas(1,1,j),psi_sd(1,1,idx_alpha(l)),exc,degree,phase2,Nint) call i_h_j(psi_cas(1,1,j),psi_sd(1,1,idx_alpha(l)),Nint,hIl) dka(:) = hIl * lambda_mrcc(idx_alpha(l),:) * phase * phase2 exit endif enddo do l=1,N_states dIa(l) += dka(l)*dIk(l) enddo enddo ci_inv(1:N_states) = 1.d0/psi_cas_coefs(j,1:N_states) do l=1,idx_alpha(0) k = idx_alpha(l) call i_h_j(tq(1,1,i),psi_sd(1,1,idx_alpha(l)),Nint,hla) do m=1,N_states delta_ij_(idx_sd(k),idx_cas(j),m) += dIa(m) * hla delta_ij_(idx_cas(j),idx_sd(k),m) += dIa(m) * hla delta_ij_(idx_cas(j),idx_cas(j),m) -= dIa(m) * hla * ci_inv(m) * psi_sd_coefs(k,m) enddo enddo enddo enddo end subroutine mrcc_dress_simple(delta_ij_sd_,Ndet_sd,i_generator,n_selected,det_buffer,Nint,iproc) use bitmasks implicit none integer, intent(in) :: i_generator,n_selected, Nint, iproc integer, intent(in) :: Ndet_sd double precision, intent(inout) :: delta_ij_sd_(Ndet_sd,Ndet_sd,*) integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) integer :: i,j,k,m integer :: new_size logical :: is_in_wavefunction integer :: degree(psi_det_size) integer :: idx(0:psi_det_size) logical :: good integer(bit_kind) :: tq(Nint,2,n_selected) integer :: N_tq, c_ref integer :: connected_to_ref call find_triples_and_quadruples(i_generator,n_selected,det_buffer,Nint,tq,N_tq) ! Compute / (E0 - Haa) double precision :: hka, haa double precision :: haj double precision :: f(N_states) do i=1,N_tq call get_excitation_degree_vector(psi_sd,tq(1,1,i),degree,Nint,Ndet_sd,idx) call i_h_j(tq(1,1,i),tq(1,1,i),Nint,haa) do m=1,N_states f(m) = 1.d0/(ci_electronic_energy(m)-haa) enddo do k=1,idx(0) call i_h_j(tq(1,1,i),psi_sd(1,1,idx(k)),Nint,hka) do j=k,idx(0) call i_h_j(tq(1,1,i),psi_sd(1,1,idx(j)),Nint,haj) do m=1,N_states delta_ij_sd_(idx(k), idx(j),m) += haj*hka* f(m) delta_ij_sd_(idx(j), idx(k),m) += haj*hka* f(m) enddo enddo enddo enddo end subroutine find_triples_and_quadruples(i_generator,n_selected,det_buffer,Nint,tq,N_tq) use bitmasks implicit none integer, intent(in) :: i_generator,n_selected, Nint integer(bit_kind), intent(in) :: det_buffer(Nint,2,n_selected) integer :: i,j,k,m logical :: is_in_wavefunction integer :: degree(psi_det_size) integer :: idx(0:psi_det_size) logical :: good integer(bit_kind), intent(out) :: tq(Nint,2,n_selected) integer, intent(out) :: N_tq integer :: c_ref integer :: connected_to_ref N_tq = 0 do i=1,N_selected c_ref = connected_to_ref(det_buffer(1,1,i),psi_det_generators,Nint, & i_generator,N_det_generators) if (c_ref /= 0) then cycle endif ! Select determinants that are triple or quadruple excitations ! from the CAS good = .True. call get_excitation_degree_vector(psi_cas,det_buffer(1,1,i),degree,Nint,N_det_cas,idx) do k=1,idx(0) if (degree(k) < 3) then good = .False. exit endif enddo if (good) then if (.not. is_in_wavefunction(det_buffer(1,1,i),Nint,N_det)) then N_tq += 1 do k=1,N_int tq(k,1,N_tq) = det_buffer(k,1,i) tq(k,2,N_tq) = det_buffer(k,2,i) enddo endif endif enddo end