subroutine give_2h1p_contrib_sec_order(matrix_2h1p) use bitmasks implicit none double precision , intent(inout) :: matrix_2h1p(N_det,N_det,*) integer :: i,j,r,a,b integer :: iorb, jorb, rorb, aorb, borb integer :: ispin,jspin integer :: idet,jdet integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,2,2) double precision :: perturb_dets_phase(n_act_orb,2,2) double precision :: perturb_dets_hij(n_act_orb,2,2) double precision :: coef_perturb_from_idet(n_act_orb,2,2,N_states,3) integer :: inint integer :: elec_num_tab_local(2),acu_elec integer(bit_kind) :: det_tmp(N_int,2) integer(bit_kind) :: det_tmp_j(N_int,2) integer :: exc(0:2,2,2) integer :: accu_elec double precision :: get_mo_bielec_integral_schwartz double precision :: active_int(n_act_orb,2) double precision :: hij,phase !matrix_2h1p = 0.d0 elec_num_tab_local = 0 do inint = 1, N_int elec_num_tab_local(1) += popcnt(psi_det(inint,1,1)) elec_num_tab_local(2) += popcnt(psi_det(inint,2,1)) enddo do i = 1, n_inact_orb ! First inactive iorb = list_inact(i) do j = 1, n_inact_orb ! Second inactive jorb = list_inact(j) do r = 1, n_virt_orb ! First virtual rorb = list_virt(r) ! take all the integral you will need for i,j,r fixed do a = 1, n_act_orb aorb = list_act(a) active_int(a,1) = get_mo_bielec_integral_schwartz(iorb,jorb,rorb,aorb,mo_integrals_map) ! direct active_int(a,2) = get_mo_bielec_integral_schwartz(iorb,jorb,aorb,rorb,mo_integrals_map) ! exchange perturb_dets_phase(a,1,1) = -1000.d0 perturb_dets_phase(a,1,2) = -1000.d0 perturb_dets_phase(a,2,2) = -1000.d0 perturb_dets_phase(a,2,1) = -1000.d0 enddo integer :: degree(N_det) integer :: idx(0:N_det) double precision :: delta_e(n_act_orb,2,N_states) integer :: istate integer :: index_orb_act_mono(N_det,3) do idet = 1, N_det call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements do ispin = 1, 2 ! spin of the couple a-a^dagger (i,r) do jspin = 1, 2 ! spin of the couple z-a^dagger (j,a) if(ispin == jspin .and. iorb.le.jorb)cycle ! condition not to double count do a = 1, n_act_orb ! First active aorb = list_act(a) do inint = 1, N_int det_tmp(inint,1) = psi_det(inint,1,idet) det_tmp(inint,2) = psi_det(inint,2,idet) enddo ! Do the excitation inactive -- > virtual call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin ! Do the excitation inactive -- > active call clear_bit_to_integer(jorb,det_tmp(1,jspin),N_int) ! hole in "jorb" of spin Jspin call set_bit_to_integer(aorb,det_tmp(1,jspin),N_int) ! particle in "aorb" of spin Jspin ! Check if the excitation is possible or not on psi_det(idet) accu_elec= 0 do inint = 1, N_int accu_elec+= popcnt(det_tmp(inint,jspin)) enddo if(accu_elec .ne. elec_num_tab_local(jspin))then perturb_dets_phase(a,jspin,ispin) = -1000.d0 perturb_dets_hij(a,jspin,ispin) = 0.d0 do istate = 1, N_states coef_perturb_from_idet(a,jspin,ispin,istate,1) = 0.d0 coef_perturb_from_idet(a,jspin,ispin,istate,2) = 0.d0 enddo cycle endif do inint = 1, N_int perturb_dets(inint,1,a,jspin,ispin) = det_tmp(inint,1) perturb_dets(inint,2,a,jspin,ispin) = det_tmp(inint,2) enddo call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int) perturb_dets_phase(a,jspin,ispin) = phase do istate = 1, N_states delta_e(a,jspin,istate) = one_creat(a,jspin,istate) & - fock_virt_total_spin_trace(rorb,istate) & + fock_core_inactive_total_spin_trace(iorb,istate) & + fock_core_inactive_total_spin_trace(jorb,istate) enddo if(ispin == jspin)then perturb_dets_hij(a,jspin,ispin) = phase * (active_int(a,2) - active_int(a,1) ) else perturb_dets_hij(a,jspin,ispin) = phase * active_int(a,1) endif !!!!!!!!!!!!!!!!!!!!!1 Computation of the coefficient at first order coming from idet !!!!!!!!!!!!!!!!!!!!! for the excitation (i,j)(ispin,jspin) ---> (r,a)(ispin,jspin) do istate = 1, N_states coef_perturb_from_idet(a,jspin,ispin,istate,1) = perturb_dets_hij(a,jspin,ispin) / delta_e(a,jspin,istate) enddo enddo enddo enddo !!!!!!!!!!!!!!!!!!!!!!!!!!!! Second order coefficient : interactions between the perturbers throw the active space do a = 1, n_act_orb do jspin = 1, 2 do ispin = 1, 2 if( perturb_dets_phase(a,jspin,ispin) .le. -10.d0)cycle ! determinant perturber | det_tmp > = a^{\dagger}_{r,ispin} a^{\dagger}_{v,jspin} a_{a,jspin} a_{i,ispin} | Idet > do inint = 1, N_int det_tmp(inint,1) = iand(perturb_dets(inint,1,a,jspin,ispin),cas_bitmask(inint,1,1)) det_tmp(inint,2) = iand(perturb_dets(inint,2,a,jspin,ispin),cas_bitmask(inint,1,1)) enddo do istate = 1, N_states coef_perturb_from_idet(a,jspin,ispin,istate,2) = 0.d0 enddo do b = 1, n_act_orb do kspin = jspin , jspin integer :: degree_scalar if( perturb_dets_phase(b,kspin,ispin) .le. -10.d0)cycle do inint = 1, N_int det_tmp_j(inint,1) = iand(perturb_dets(inint,1,b,kspin,ispin),cas_bitmask(inint,1,1)) det_tmp_j(inint,2) = iand(perturb_dets(inint,2,b,kspin,ispin),cas_bitmask(inint,1,1)) enddo call get_excitation_degree(det_tmp,det_tmp_j,degree_scalar,N_int) if (degree_scalar > 2 .or. degree_scalar == 0)cycle ! determinant perturber | det_tmp_j > = a^{\dagger}_{r,ispin} a^{\dagger}_{v,jspin} a_{b,jspin} a_{i,ispin} | Idet > ! print*, '**********************' ! integer(bit_kind) :: det_bis(N_int,2) ! call debug_det(det_tmp,N_int) ! call debug_det(det_tmp_j,N_int) ! do inint = 1, N_int ! det_bis(inint,1) = perturb_dets(inint,1,b,kspin,ispin) ! det_bis(inint,2) = perturb_dets(inint,2,b,kspin,ispin) ! enddo ! call debug_det(det_bis,N_int) call i_H_j_dyall(det_tmp,det_tmp_j,N_int,hij) do istate = 1, N_states coef_perturb_from_idet(a,jspin,ispin,istate,2) += coef_perturb_from_idet(b,kspin,ispin,istate,1) & * hij / delta_e(a,jspin,istate) if(dabs(hij).gt.0.01d0)then print*,degree_scalar, hij print*, coef_perturb_from_idet(b,kspin,ispin,istate,1)* hij / delta_e(a,jspin,istate),coef_perturb_from_idet(a,jspin,ispin,istate,1) endif enddo enddo enddo enddo enddo enddo do a = 1, n_act_orb do jspin = 1, 2 do ispin = 1, 2 if( perturb_dets_phase(a,jspin,ispin) .le. -10.d0)cycle do istate = 1, N_states ! print*, coef_perturb_from_idet(a,jspin,ispin,istate,1),coef_perturb_from_idet(a,jspin,ispin,istate,2) coef_perturb_from_idet(a,jspin,ispin,istate,2) += coef_perturb_from_idet(a,jspin,ispin,istate,1) enddo enddo enddo enddo ! stop !!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS !!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator !!!!!!!!!!!!!!!!!!!!!!!!!!!! do jdet = 1, idx(0) if(idx(jdet).ne.idet)then call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int) if (exc(0,1,1) == 1) then ! Mono alpha index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_a index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,1)) !!! a_{b} index_orb_act_mono(idx(jdet),3) = 1 else ! Mono beta index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_a index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,1,2)) !!! a_{b} index_orb_act_mono(idx(jdet),3) = 2 endif else index_orb_act_mono(idx(jdet),1) = -1 endif enddo integer :: kspin do jdet = 1, idx(0) if(idx(jdet).ne.idet)then ! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator ! are connected by the presence of the perturbers determinants |det_tmp> aorb = index_orb_act_mono(idx(jdet),1) ! a^{\dagger}_{aorb} borb = index_orb_act_mono(idx(jdet),2) ! a_{borb} kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation ! the determinants Idet and Jdet interact throw the following operator ! | Jdet > = a_{borb,kspin} a^{\dagger}_{aorb, kspin} | Idet > do ispin = 1, 2 ! you loop on all possible spin for the excitation ! a^{\dagger}_r a_{i} (ispin) if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{aorb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Idet > do inint = 1, N_int det_tmp(inint,1) = perturb_dets(inint,1,aorb,kspin,ispin) det_tmp(inint,2) = perturb_dets(inint,2,aorb,kspin,ispin) enddo double precision :: hja ! you determine the interaction between the excited determinant and the other parent | Jdet > ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{borb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Jdet > ! hja = < det_tmp | H | Jdet > call get_double_excitation(psi_det(1,1,idx(jdet)),det_tmp,exc,phase,N_int) if(kspin == ispin)then hja = phase * (active_int(borb,2) - active_int(borb,1) ) else hja = phase * active_int(borb,1) endif do istate = 1, N_states matrix_2h1p(idx(jdet),idet,istate) += hja * coef_perturb_from_idet(aorb,kspin,ispin,istate,2) enddo enddo ! ispin else ! diagonal part of the dressing : interaction of | Idet > with all the perturbers generated by the excitations ! ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{aorb,kspin} a_{jorb,kspin} a_{iorb,ispin} | Idet > do ispin = 1, 2 do kspin = 1, 2 if(ispin == kspin .and. iorb.le.jorb)cycle ! condition not to double count do a = 1, n_act_orb ! First active do istate = 1, N_states matrix_2h1p(idet,idet,istate) += coef_perturb_from_idet(a,kspin,ispin,istate,2) * perturb_dets_hij(a,kspin,ispin) enddo enddo enddo enddo endif enddo enddo enddo enddo enddo end subroutine give_1h2p_contrib_sec_order(matrix_1h2p) use bitmasks implicit none double precision , intent(inout) :: matrix_1h2p(N_det,N_det,*) integer :: i,v,r,a,b integer :: iorb, vorb, rorb, aorb, borb integer :: ispin,jspin integer :: idet,jdet integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,2,2) double precision :: perturb_dets_phase(n_act_orb,2,2) double precision :: perturb_dets_hij(n_act_orb,2,2) double precision :: perturb_dets_hpsi0(n_act_orb,2,2,N_states) double precision :: coef_perturb_from_idet(n_act_orb,2,2,N_states,2) logical :: already_generated(n_act_orb,2,2) integer :: inint integer :: elec_num_tab_local(2),acu_elec integer(bit_kind) :: det_tmp(N_int,2) integer(bit_kind) :: det_tmp_j(N_int,2) integer :: exc(0:2,2,2) integer :: accu_elec double precision :: get_mo_bielec_integral_schwartz double precision :: active_int(n_act_orb,2) double precision :: hij,phase double precision :: accu_contrib integer :: degree(N_det) integer :: idx(0:N_det) double precision :: delta_e(n_act_orb,2,N_states) integer :: istate integer :: index_orb_act_mono(N_det,6) double precision :: delta_e_inactive_virt(N_states) integer :: kspin double precision :: delta_e_ja(N_states) double precision :: hja double precision :: contrib_hij accu_contrib = 0.d0 !matrix_1h2p = 0.d0 elec_num_tab_local = 0 do inint = 1, N_int elec_num_tab_local(1) += popcnt(psi_det(inint,1,1)) elec_num_tab_local(2) += popcnt(psi_det(inint,2,1)) enddo do i = 1, n_inact_orb ! First inactive iorb = list_inact(i) do v = 1, n_virt_orb ! First virtual vorb = list_virt(v) do r = 1, n_virt_orb ! Second virtual rorb = list_virt(r) ! take all the integral you will need for i,j,r fixed do a = 1, n_act_orb aorb = list_act(a) active_int(a,1) = get_mo_bielec_integral_schwartz(iorb,aorb,rorb,vorb,mo_integrals_map) ! direct active_int(a,2) = get_mo_bielec_integral_schwartz(iorb,aorb,vorb,rorb,mo_integrals_map) ! exchange perturb_dets_phase(a,1,1) = -1000.d0 perturb_dets_phase(a,1,2) = -1000.d0 perturb_dets_phase(a,2,2) = -1000.d0 perturb_dets_phase(a,2,1) = -1000.d0 already_generated(a,1,1) = .False. already_generated(a,1,2) = .False. already_generated(a,2,2) = .False. already_generated(a,2,1) = .False. enddo do istate = 1, N_states delta_e_inactive_virt(istate) = & - fock_virt_total_spin_trace(rorb,istate) & - fock_virt_total_spin_trace(vorb,istate) & + fock_core_inactive_total_spin_trace(iorb,istate) enddo do idet = 1, N_det call get_excitation_degree_vector_mono_or_exchange(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements do ispin = 1, 2 ! spin of the couple a-a^dagger (iorb,rorb) do jspin = 1, 2 ! spin of the couple a-a^dagger (aorb,vorb) do a = 1, n_act_orb ! First active aorb = list_act(a) do istate = 1, N_states perturb_dets_hpsi0(a,jspin,ispin,istate) = 0.d0 coef_perturb_from_idet(a,jspin,ispin,istate,1) = 0.d0 coef_perturb_from_idet(a,jspin,ispin,istate,2) = 0.d0 enddo if(ispin == jspin .and. vorb.le.rorb)cycle ! condition not to double count do inint = 1, N_int det_tmp(inint,1) = psi_det(inint,1,idet) det_tmp(inint,2) = psi_det(inint,2,idet) enddo ! Do the excitation inactive -- > virtual call clear_bit_to_integer(iorb,det_tmp(1,ispin),N_int) ! hole in "iorb" of spin Ispin call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin ! Do the excitation active -- > virtual call clear_bit_to_integer(aorb,det_tmp(1,jspin),N_int) ! hole in "aorb" of spin Jspin call set_bit_to_integer(vorb,det_tmp(1,jspin),N_int) ! particle in "vorb" of spin Jspin ! Check if the excitation is possible or not on psi_det(idet) accu_elec= 0 do inint = 1, N_int accu_elec+= popcnt(det_tmp(inint,jspin)) enddo if(accu_elec .ne. elec_num_tab_local(jspin))then perturb_dets_phase(a,jspin,ispin) = -1000.0d0 perturb_dets_hij(a,jspin,ispin) = 0.d0 do istate = 1, N_states coef_perturb_from_idet(a,jspin,ispin,istate,1) = 0.d0 coef_perturb_from_idet(a,jspin,ispin,istate,2) = 0.d0 enddo cycle endif do inint = 1, N_int perturb_dets(inint,1,a,jspin,ispin) = det_tmp(inint,1) perturb_dets(inint,2,a,jspin,ispin) = det_tmp(inint,2) enddo do inint = 1, N_int det_tmp(inint,1) = perturb_dets(inint,1,a,jspin,ispin) det_tmp(inint,2) = perturb_dets(inint,2,a,jspin,ispin) enddo call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int) perturb_dets_phase(a,jspin,ispin) = phase do istate = 1, N_states delta_e(a,jspin,istate) = one_anhil(a,jspin,istate) + delta_e_inactive_virt(istate) enddo if(ispin == jspin)then perturb_dets_hij(a,jspin,ispin) = phase * (active_int(a,1) - active_int(a,2) ) else perturb_dets_hij(a,jspin,ispin) = phase * active_int(a,1) endif enddo enddo enddo !!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS !!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator !!!!!!!!!!!!!!!!!!!!!!!!!!!! do jdet = 1, idx(0) if(idx(jdet).ne.idet)then ! print*, degree(jdet) if(degree(jdet)==1)then call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int) if (exc(0,1,1) == 1) then ! Mono alpha index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} index_orb_act_mono(idx(jdet),3) = 1 else ! Mono beta index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,2)) !!! a_a index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b} index_orb_act_mono(idx(jdet),3) = 2 endif else if(degree(jdet)==2)then call get_double_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int) ! Mono alpha index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} index_orb_act_mono(idx(jdet),3) = 1 ! Mono beta index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,1,2)) !!! a_a index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b} index_orb_act_mono(idx(jdet),6) = 2 ! print*, '******************' ! call debug_det(psi_det(1,1,idet),N_int) ! call debug_det(psi_det(1,1,idx(jdet)),N_int) ! print*, 'h1,p1,s1 = ',index_orb_act_mono(idx(jdet),1),index_orb_act_mono(idx(jdet),2), index_orb_act_mono(idx(jdet),3) ! print*, 'h2,p2,s2 = ',index_orb_act_mono(idx(jdet),4),index_orb_act_mono(idx(jdet),5), index_orb_act_mono(idx(jdet),6) ! print*, '******************' ! pause endif else index_orb_act_mono(idx(jdet),1) = -1 endif enddo do jdet = 1, idx(0) if(idx(jdet).ne.idet)then if(degree(jdet) == 1)then ! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator ! are connected by the presence of the perturbers determinants |det_tmp> aorb = index_orb_act_mono(idx(jdet),1) ! a_{aorb} borb = index_orb_act_mono(idx(jdet),2) ! a^{\dagger}_{borb} kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation ! the determinants Idet and Jdet interact throw the following operator ! | Jdet > = a^{\dagger}_{borb,kspin} a_{aorb, kspin} | Idet > do ispin = 1, 2 ! you loop on all possible spin for the excitation ! a^{\dagger}_r a_{i} (ispin) integer ::corb,dorb,i_ok integer(bit_kind) :: det_tmp_bis(N_int,2) double precision :: hib , hab double precision :: delta_e_ab(N_states) double precision :: hib_test,hja_test,hab_test if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count do jspin = 1, 2 if (jspin .ne. kspin)then do corb = 1, n_act_orb if(perturb_dets_phase(corb,jspin,ispin).le.-100d0)cycle ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{corb,kspin} a_{iorb,ispin} | Idet > do inint = 1, N_int det_tmp(inint,1) = perturb_dets(inint,1,corb,jspin,ispin) det_tmp(inint,2) = perturb_dets(inint,2,corb,jspin,ispin) det_tmp_bis(inint,1) = perturb_dets(inint,1,corb,jspin,ispin) det_tmp_bis(inint,2) = perturb_dets(inint,2,corb,jspin,ispin) enddo ! < idet | H | det_tmp > = phase * (ir|cv) ! call i_H_j(det_tmp,psi_det(1,1,idet),N_int,hib) call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int) if(ispin == jspin)then hib= phase * (active_int(corb,1) - active_int(corb,2)) else hib= phase * active_int(corb,1) endif ! if(hib_test .ne. hib)then ! print*, 'hib_test .ne. hib' ! print*, hib, hib_test ! stop ! endif ! | det_tmp_bis > = a^{\dagger}_{borb,kspin} a_{aorb,kspin} | det_tmp > call do_mono_excitation(det_tmp_bis,list_act(aorb),list_act(borb),kspin,i_ok) if(i_ok .ne. 1)cycle ! < det_tmp | H | det_tmp_bis > = F_{aorb,borb} call i_H_j(det_tmp_bis,det_tmp,N_int,hab) ! < jdet | H | det_tmp_bis > = phase * (ir|cv) ! call i_H_j(det_tmp_bis,psi_det(1,1,idx(jdet)),N_int,hja) call get_double_excitation(det_tmp_bis,psi_det(1,1,idx(jdet)),exc,phase,N_int) if(ispin == jspin)then hja= phase * (active_int(corb,1) - active_int(corb,2)) else hja= phase * (active_int(corb,1)) endif ! if(hja_test .ne. hja)then ! print*, 'hja_test .ne. hja' ! print*, hja, hja_test ! stop ! endif do istate = 1, N_states delta_e_ab(istate) = delta_e(corb,jspin,istate) + one_anhil_one_creat(borb,aorb,kspin,kspin,istate) matrix_1h2p(idx(jdet),idet,istate) = matrix_1h2p(idx(jdet),idet,istate) + & hib / delta_e(corb,jspin,istate) * hab / delta_e_ab(istate) * hja ! < det_tmp | H | Idet > / delta_E (Idet --> det_tmp ) ! < det_tmp | H | det_tmp_bis > / delta_E (Idet --> det_tmp --> det_tmp_bis) ! < det_tmp_bis | H | Jdet > enddo enddo ! corb else do corb = 1, n_act_orb if(corb == aorb .or. corb == borb) cycle if(perturb_dets_phase(corb,jspin,ispin).le.-100d0)cycle ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{corb,kspin} a_{iorb,ispin} | Idet > do inint = 1, N_int det_tmp(inint,1) = perturb_dets(inint,1,corb,jspin,ispin) det_tmp(inint,2) = perturb_dets(inint,2,corb,jspin,ispin) det_tmp_bis(inint,1) = perturb_dets(inint,1,corb,jspin,ispin) det_tmp_bis(inint,2) = perturb_dets(inint,2,corb,jspin,ispin) enddo ! < idet | H | det_tmp > = phase * ( (ir|cv) - (iv|cr) ) ! call i_H_j(det_tmp,psi_det(1,1,idet),N_int,hib) call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int) if(ispin == jspin)then hib= phase * (active_int(corb,1) - active_int(corb,2)) else hib= phase * active_int(corb,1) endif ! if(hib_test .ne. hib)then ! print*, 'hib_test .ne. hib jspin == kspin' ! print*, hib, hib_test ! stop ! endif ! | det_tmp_bis > = a^{\dagger}_{borb,kspin} a_{aorb,kspin} | det_tmp > call do_mono_excitation(det_tmp_bis,list_act(aorb),list_act(borb),kspin,i_ok) if(i_ok .ne. 1)cycle ! ! < det_tmp | H | det_tmp_bis > = F_{aorb,borb} call i_H_j(det_tmp_bis,det_tmp,N_int,hab) ! < jdet | H | det_tmp_bis > = phase * ( (ir|cv) - (iv|cr) ) ! call i_H_j(det_tmp_bis,psi_det(1,1,idx(jdet)),N_int,hja) call get_double_excitation(det_tmp_bis,psi_det(1,1,idx(jdet)),exc,phase,N_int) if(ispin == jspin)then hja= phase * (active_int(corb,1) - active_int(corb,2)) else hja= phase * (active_int(corb,1)) endif ! if(hja_test .ne. hja)then ! print*, 'hja_test .ne. hja' ! print*, hja, hja_test ! stop ! endif do istate = 1, N_states delta_e_ab(istate) = delta_e(corb,jspin,istate) + one_anhil_one_creat(borb,aorb,kspin,kspin,istate) matrix_1h2p(idx(jdet),idet,istate) = matrix_1h2p(idx(jdet),idet,istate) + & hib / delta_e(corb,jspin,istate) * hab / delta_e_ab(istate) * hja ! < det_tmp | H | Idet > / delta_E (Idet --> det_tmp ) ! < det_tmp | H | det_tmp_bis > / delta_E (Idet --> det_tmp --> det_tmp_bis) ! < det_tmp_bis | H | Jdet > enddo enddo ! corb endif enddo ! jspin enddo ! ispin else !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Case of double excitations !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! call debug_det(psi_det(1,1,idet),N_int) ! call debug_det(psi_det(1,1,idx(jdet)),N_int) ! pause endif else ! diagonal part of the dressing : interaction of | Idet > with all the perturbers generated by the excitations ! ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,kspin} a_{aorb,kspin} a_{iorb,ispin} | Idet > do ispin = 1, 2 do kspin = 1, 2 do a = 1, n_act_orb ! First active if( perturb_dets_phase(a,kspin,ispin) .le. -10.d0)cycle if(ispin == kspin .and. vorb.le.rorb)cycle ! condition not to double count contrib_hij = perturb_dets_hij(a,kspin,ispin) * perturb_dets_hij(a,kspin,ispin) do istate = 1, N_states ! matrix_1h2p(idet,idet,istate) += contrib_hij * delta_e(a,kspin,istate) ! perturb_dets_hpsi0(a,kspin,ispin,istate) += psi_coef(idet,istate) * perturb_dets_hij(a,kspin,ispin) ! coef_perturb_from_idet(a,kspin,ispin,istate,1) += psi_coef(idet,istate) & ! * perturb_dets_hij(a,kspin,ispin) * delta_e(a,kspin,istate) enddo enddo enddo enddo endif enddo enddo enddo enddo enddo print* , 'accu_contrib = ',accu_contrib end ! do a = 1, n_act_orb ! do jspin = 1, 2 ! do ispin = 1, 2 ! if( perturb_dets_phase(a,jspin,ispin) .le. -10.d0)cycle ! ! determinant perturber | det_tmp > = a^{\dagger}_{r,ispin} a^{\dagger}_{v,jspin} a_{a,jspin} a_{i,ispin} | Idet > ! do inint = 1, N_int ! det_tmp(inint,1) = perturb_dets(inint,1,a,jspin,ispin) ! det_tmp(inint,2) = perturb_dets(inint,2,a,jspin,ispin) ! enddo ! do istate = 1, N_states ! coef_perturb_from_idet(a,jspin,ispin,istate,2) = 0.d0 ! enddo ! do b = 1, n_act_orb ! do kspin = jspin , jspin ! integer :: degree_scalar ! if( perturb_dets_phase(b,kspin,ispin) .le. -10.d0)cycle ! do inint = 1, N_int ! det_tmp_j(inint,1) = perturb_dets(inint,1,b,kspin,ispin) ! det_tmp_j(inint,2) = perturb_dets(inint,2,b,kspin,ispin) ! enddo ! call get_excitation_degree(det_tmp,det_tmp_j,degree_scalar,N_int) ! if (degree_scalar > 2 .or. degree_scalar == 0)cycle ! ! determinant perturber | det_tmp_j > = a^{\dagger}_{r,ispin} a^{\dagger}_{v,jspin} a_{b,jspin} a_{i,ispin} | Idet > ! call i_H_j(det_tmp,det_tmp_j,N_int,hij) ! do istate = 1, N_states ! coef_perturb_from_idet(a,jspin,ispin,istate,2) += coef_perturb_from_idet(b,kspin,ispin,istate,1) & ! * hij / delta_e(a,jspin,istate) ! endif ! enddo ! enddo ! enddo ! enddo ! enddo ! enddo ! do a = 1, n_act_orb ! do jspin = 1, 2 ! do ispin = 1, 2 ! if( perturb_dets_phase(a,jspin,ispin) .le. -10.d0)cycle ! ! determinant perturber | det_tmp > = a^{\dagger}_{r,ispin} a^{\dagger}_{v,jspin} a_{a,jspin} a_{i,ispin} | Idet > ! do inint = 1, N_int ! det_tmp(inint,1) = iand(perturb_dets(inint,1,a,jspin,ispin),cas_bitmask(inint,1,1)) ! det_tmp(inint,2) = iand(perturb_dets(inint,2,a,jspin,ispin),cas_bitmask(inint,1,1)) ! enddo ! do istate = 1, N_states ! coef_perturb_from_idet(a,jspin,ispin,istate,2) = 0.d0 ! enddo ! do b = 1, n_act_orb ! do kspin = jspin , jspin ! integer :: degree_scalar ! if( perturb_dets_phase(b,kspin,ispin) .le. -10.d0)cycle ! do inint = 1, N_int ! det_tmp_j(inint,1) = iand(perturb_dets(inint,1,b,kspin,ispin),cas_bitmask(inint,1,1)) ! det_tmp_j(inint,2) = iand(perturb_dets(inint,2,b,kspin,ispin),cas_bitmask(inint,1,1)) ! enddo ! call get_excitation_degree(det_tmp,det_tmp_j,degree_scalar,N_int) ! if (degree_scalar > 2 .or. degree_scalar == 0)cycle ! ! determinant perturber | det_tmp_j > = a^{\dagger}_{r,ispin} a^{\dagger}_{v,jspin} a_{b,jspin} a_{i,ispin} | Idet > !! print*, '**********************' !! integer(bit_kind) :: det_bis(N_int,2) !! call debug_det(det_tmp,N_int) !! call debug_det(det_tmp_j,N_int) !! do inint = 1, N_int !! det_bis(inint,1) = perturb_dets(inint,1,b,kspin,ispin) !! det_bis(inint,2) = perturb_dets(inint,2,b,kspin,ispin) !! enddo !! call debug_det(det_bis,N_int) ! call i_H_j_dyall(det_tmp,det_tmp_j,N_int,hij) ! do istate = 1, N_states ! coef_perturb_from_idet(a,jspin,ispin,istate,2) += coef_perturb_from_idet(b,kspin,ispin,istate,1) & ! * hij / delta_e(a,jspin,istate) ! if(dabs(hij).gt.0.01d0)then ! print*,degree_scalar, hij ! print*, coef_perturb_from_idet(b,kspin,ispin,istate,1)* hij / delta_e(a,jspin,istate),coef_perturb_from_idet(a,jspin,ispin,istate,1) ! ! endif ! enddo ! enddo ! enddo ! enddo ! enddo ! enddo ! do a = 1, n_act_orb ! do jspin = 1, 2 ! do ispin = 1, 2 ! if( perturb_dets_phase(a,jspin,ispin) .le. -10.d0)cycle ! do istate = 1, N_states ! coef_perturb_from_idet(a,jspin,ispin,istate,2) += coef_perturb_from_idet(a,jspin,ispin,istate,1) ! enddo ! enddo ! enddo ! enddo