subroutine give_2p_new(matrix_2p) use bitmasks implicit none double precision , intent(inout) :: matrix_2p(N_det,N_det,*) integer :: i,v,r,a,b,c integer :: iorb, vorb, rorb, aorb, borb,corb integer :: ispin,jspin integer :: idet,jdet integer(bit_kind) :: perturb_dets(N_int,2,n_act_orb,n_act_orb,2,2) double precision :: perturb_dets_phase(n_act_orb,n_act_orb,2,2) double precision :: perturb_dets_hij(n_act_orb,n_act_orb,2,2) double precision :: perturb_dets_hpsi0(n_act_orb,n_act_orb,2,2,N_states) integer :: inint integer :: elec_num_tab_local(2),acu_elec integer(bit_kind) :: det_tmp(N_int,2) integer(bit_kind) :: det_tmp_j(N_int,2) integer :: exc(0:2,2,2) integer :: accu_elec double precision :: get_mo_bielec_integral double precision :: active_int(n_act_orb,n_act_orb,2) double precision :: hij,phase double precision :: accu_contrib(N_states) integer :: degree(N_det) integer :: idx(0:N_det) double precision :: delta_e(n_act_orb,n_act_orb,2,2,N_states) double precision :: delta_e_inv(n_act_orb,n_act_orb,2,2,N_states) double precision :: delta_e_inactive_virt(N_states) integer :: istate integer :: index_orb_act_mono(N_det,6) integer :: kspin double precision :: delta_e_ja(N_states) double precision :: hja double precision :: contrib_hij double precision :: fock_operator_local(n_act_orb,n_act_orb,2) double precision :: hij_test integer ::i_ok integer(bit_kind) :: det_tmp_bis(N_int,2) double precision :: hib , hab double precision :: delta_e_ab(N_states) double precision :: hib_test,hja_test,hab_test integer :: i_hole,i_part double precision :: hia,hjb integer :: other_spin(2) other_spin(1) = 2 other_spin(2) = 1 accu_contrib = 0.d0 !matrix_2p = 0.d0 elec_num_tab_local = 0 do inint = 1, N_int elec_num_tab_local(1) += popcnt(psi_det(inint,1,1)) elec_num_tab_local(2) += popcnt(psi_det(inint,2,1)) enddo do v = 1, n_virt_orb ! First virtual vorb = list_virt(v) do r = 1, n_virt_orb ! Second virtual rorb = list_virt(r) ! take all the integral you will need for r,v fixed do a = 1, n_act_orb aorb = list_act(a) do b = 1, n_act_orb borb = list_act(b) active_int(a,b,1) = get_mo_bielec_integral(aorb,borb,rorb,vorb,mo_integrals_map) ! direct ( a--> r | b--> v ) active_int(a,b,2) = get_mo_bielec_integral(aorb,borb,vorb,rorb,mo_integrals_map) ! exchange ( b--> r | a--> v ) perturb_dets_phase(a,b,1,1) = -1000.d0 perturb_dets_phase(a,b,1,2) = -1000.d0 perturb_dets_phase(a,b,2,2) = -1000.d0 perturb_dets_phase(a,b,2,1) = -1000.d0 perturb_dets_phase(b,a,1,1) = -1000.d0 perturb_dets_phase(b,a,1,2) = -1000.d0 perturb_dets_phase(b,a,2,2) = -1000.d0 perturb_dets_phase(b,a,2,1) = -1000.d0 enddo enddo do istate = 1, N_states delta_e_inactive_virt(istate) = & - fock_virt_total_spin_trace(rorb,istate) & - fock_virt_total_spin_trace(vorb,istate) enddo do idet = 1, N_det ! call get_excitation_degree_vector_mono(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx) call get_excitation_degree_vector(psi_det,psi_det(1,1,idet),degree,N_int,N_det,idx) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Precomputation of matrix elements do ispin = 1, 2 ! spin of the couple a-a^dagger (aorb,rorb) do jspin = 1, 2 ! spin of the couple a-a^dagger (borb,vorb) do b = 1, n_act_orb ! First active borb = list_act(b) do a = 1, n_act_orb ! First active aorb = list_act(a) ! if(ispin == 2.and. jspin ==1)then ! perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0 ! perturb_dets_hij(a,b,ispin,jspin) = 0.d0 ! cycle ! condition not to double count ! endif if(ispin == jspin .and. vorb.le.rorb)then perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0 perturb_dets_hij(a,b,ispin,jspin) = 0.d0 cycle ! condition not to double count endif if(ispin == jspin .and. aorb.le.borb) then perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0 perturb_dets_hij(a,b,ispin,jspin) = 0.d0 cycle ! condition not to double count endif do inint = 1, N_int det_tmp(inint,1) = psi_det(inint,1,idet) det_tmp(inint,2) = psi_det(inint,2,idet) enddo ! Do the excitation (aorb,ispin) --> (rorb,ispin) call clear_bit_to_integer(aorb,det_tmp(1,ispin),N_int) ! hole in "aorb" of spin Ispin call set_bit_to_integer(rorb,det_tmp(1,ispin),N_int) ! particle in "rorb" of spin Ispin ! Do the excitation (borb,jspin) --> (vorb,jspin) call clear_bit_to_integer(borb,det_tmp(1,jspin),N_int) ! hole in "borb" of spin Jspin call set_bit_to_integer(vorb,det_tmp(1,jspin),N_int) ! particle in "vorb" of spin Jspin ! Check if the excitation is possible or not on psi_det(idet) accu_elec= 0 do inint = 1, N_int accu_elec+= popcnt(det_tmp(inint,1)) + popcnt(det_tmp(inint,2)) enddo if(accu_elec .ne. elec_num_tab_local(2)+elec_num_tab_local(1))then perturb_dets_phase(a,b,ispin,jspin) = -1000.0d0 perturb_dets_hij(a,b,ispin,jspin) = 0.d0 cycle endif do inint = 1, N_int perturb_dets(inint,1,a,b,ispin,jspin) = det_tmp(inint,1) perturb_dets(inint,2,a,b,ispin,jspin) = det_tmp(inint,2) enddo call get_double_excitation(psi_det(1,1,idet),det_tmp,exc,phase,N_int) perturb_dets_phase(a,b,ispin,jspin) = phase do istate = 1, N_states delta_e(a,b,ispin,jspin,istate) = two_anhil(a,b,ispin,jspin,istate) + delta_e_inactive_virt(istate) delta_e_inv(a,b,ispin,jspin,istate) = 1.d0 / delta_e(a,b,ispin,jspin,istate) enddo if(ispin == jspin)then perturb_dets_hij(a,b,ispin,jspin) = phase * (active_int(a,b,2) - active_int(a,b,1) ) else perturb_dets_hij(a,b,ispin,jspin) = phase * active_int(a,b,1) endif call i_H_j(psi_det(1,1,idet),det_tmp,N_int,hij) if(hij.ne.perturb_dets_hij(a,b,ispin,jspin))then print*, active_int(a,b,1) , active_int(b,a,1) double precision :: hmono,hdouble call i_H_j_verbose(psi_det(1,1,idet),det_tmp,N_int,hij,hmono,hdouble) print*, 'pb !! hij.ne.perturb_dets_hij(a,b,ispin,jspin)' print*, ispin,jspin print*, aorb,rorb,borb,vorb print*, hij,perturb_dets_hij(a,b,ispin,jspin) call debug_det(psi_det(1,1,idet),N_int) call debug_det(det_tmp,N_int) stop endif enddo ! b enddo ! a enddo ! jspin enddo ! ispin !!!!!!!!!!!!!!!!!!!!!!!!!!! determination of the connections between I and the other J determinants mono excited in the CAS !!!!!!!!!!!!!!!!!!!!!!!!!!!! the determinants I and J must be connected by the following operator !!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!! do jdet = 1, idx(0) if(degree(jdet)==1)then call get_mono_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int) if (exc(0,1,1) == 1) then ! Mono alpha i_hole = list_act_reverse(exc(1,1,1)) !!! a_a i_part = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} kspin = 1 !!! kspin index_orb_act_mono(idx(jdet),1) = i_hole index_orb_act_mono(idx(jdet),2) = i_part index_orb_act_mono(idx(jdet),3) = kspin call i_H_j_dyall(psi_active(1,1,idet),psi_active(1,1,idx(jdet)),N_int,hij) fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator else ! Mono beta i_hole = list_act_reverse(exc(1,1,2)) !!! a_a i_part = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b} kspin = 2 !!! kspin index_orb_act_mono(idx(jdet),1) = i_hole index_orb_act_mono(idx(jdet),2) = i_part index_orb_act_mono(idx(jdet),3) = kspin call i_H_j_dyall(psi_active(1,1,idet),psi_active(1,1,idx(jdet)),N_int,hij) fock_operator_local(i_hole,i_part,kspin) = hij * phase ! phase less fock operator fock_operator_local(i_part,i_hole,kspin) = hij * phase ! phase less fock operator endif else if(degree(jdet)==2)then call get_double_excitation(psi_det(1,1,idet),psi_det(1,1,idx(jdet)),exc,phase,N_int) if (exc(0,1,1) == 1) then ! Mono alpha index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a ALPHA index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} ALPHA index_orb_act_mono(idx(jdet),3) = 1 ! Mono beta index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,1,2)) !!! a_a BETA index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(1,2,2)) !!! a^{\dagger}_{b} BETA index_orb_act_mono(idx(jdet),6) = 2 else if (exc(0,1,1) == 2) then index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,1)) !!! a_a ALPHA index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(1,2,1)) !!! a^{\dagger}_{b} ALPHA index_orb_act_mono(idx(jdet),3) = 1 index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(2,1,1)) !!! a_c ALPHA index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(2,2,1)) !!! a^{\dagger}_{d} ALPHA index_orb_act_mono(idx(jdet),6) = 1 else if (exc(0,1,2) == 2) then index_orb_act_mono(idx(jdet),1) = list_act_reverse(exc(1,1,2)) !!! a_a BETA index_orb_act_mono(idx(jdet),2) = list_act_reverse(exc(2,1,2)) !!! a^{\dagger}_{b} BETA index_orb_act_mono(idx(jdet),3) = 2 index_orb_act_mono(idx(jdet),4) = list_act_reverse(exc(1,2,2)) !!! a_c BETA index_orb_act_mono(idx(jdet),5) = list_act_reverse(exc(2,2,2)) !!! a^{\dagger}_{d} BETA index_orb_act_mono(idx(jdet),6) = 2 endif endif enddo ! do jdet = 1, idx(0) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CASE OF THE MONO EXCITATIONS ! if(degree(jdet) == 1)then ! ! two determinants | Idet > and | Jdet > which are connected throw a mono excitation operator ! ! are connected by the presence of the perturbers determinants |det_tmp> ! aorb = index_orb_act_mono(idx(jdet),1) ! a_{aorb} ! borb = index_orb_act_mono(idx(jdet),2) ! a^{\dagger}_{borb} ! kspin = index_orb_act_mono(idx(jdet),3) ! spin of the excitation ! ! the determinants Idet and Jdet interact throw the following operator ! ! | Jdet > = a^{\dagger}_{borb,kspin} a_{aorb, kspin} | Idet > ! accu_contrib = 0.d0 do ispin = 1, 2 ! you loop on all possible spin for the excitation ! a^{\dagger}_r a_{a} (ispin) !!!! SECOND ORDER CONTRIBTIONS ! | det_tmp > = a^{\dagger}_{rorb,ispin} a^{\dagger}_{vorb,jspin} a_{corb,jspin} a_{iorb,ispin} | Idet > do jspin = 1, 2 if(ispin == 2 .and. jspin ==1)cycle do b = 1, n_act_orb do a = 1, n_act_orb logical :: cycle_same_spin_second_order(2) cycle_same_spin_second_order(1) = .False. cycle_same_spin_second_order(2) = .False. if(perturb_dets_phase(a,b,ispin,jspin).le.-10d0)cycle if(ispin == jspin .and. vorb.le.rorb)then cycle_same_spin_second_order(1) = .True. endif if(ispin == jspin .and. aorb.le.borb)then cycle_same_spin_second_order(2) = .True. endif do inint = 1, N_int det_tmp(inint,1) = perturb_dets(inint,1,a,b,ispin,jspin) det_tmp(inint,2) = perturb_dets(inint,2,a,b,ispin,jspin) enddo do jdet = 1, idx(0) ! if(idx(jdet).gt.idet)cycle do istate = 1, N_states call i_H_j(psi_det(1,1,idx(jdet)),det_tmp,N_int,hij) matrix_2p(idx(jdet),idet,istate) += hij * perturb_dets_hij(a,b,ispin,jspin) * delta_e_inv(a,b,ispin,jspin,istate) enddo enddo ! jdet enddo ! b enddo ! a enddo ! jspin enddo ! ispin ! else if (degree(jdet) == 0)then ! ! endif ! enddo !! jdet enddo enddo enddo end