BEGIN_PROVIDER [ double precision, lambda_mrcc, (N_states,psi_det_size) ] implicit none BEGIN_DOC ! cm/ END_DOC integer :: i,k double precision :: ihpsi(N_states) do i=1,N_det_non_cas call i_h_psi(psi_non_cas(1,1,i), psi_cas, psi_cas_coef, N_int, N_det_cas, & size(psi_cas_coef,1), n_states, ihpsi) double precision :: hij do k=1,N_states if (dabs(ihpsi(k)) > 1.d-5) then lambda_mrcc(k,i) = psi_non_cas_coef(i,k)/ihpsi(k) lambda_mrcc(k,i) = min( lambda_mrcc (k,i),0.d0 ) else lambda_mrcc(k,i) = 0.d0 endif enddo enddo END_PROVIDER BEGIN_PROVIDER [ character*(32), dressing_type ] implicit none BEGIN_DOC ! [ Simple | MRCC ] END_DOC dressing_type = "MRCC" END_PROVIDER BEGIN_PROVIDER [ double precision, delta_ij_non_cas, (N_det_non_cas, N_det_non_cas,N_states) ] implicit none BEGIN_DOC ! Dressing matrix in SD basis END_DOC delta_ij_non_cas = 0.d0 call H_apply_mrcc_simple(delta_ij_non_cas,N_det_non_cas) END_PROVIDER BEGIN_PROVIDER [ double precision, delta_ij, (N_det,N_det,N_states) ] implicit none BEGIN_DOC ! Dressing matrix in N_det basis END_DOC integer :: i,j,m delta_ij = 0.d0 if (dressing_type == "MRCC") then call H_apply_mrcc(delta_ij,N_det) else if (dressing_type == "Simple") then do m=1,N_states do j=1,N_det_non_cas do i=1,N_det_non_cas delta_ij(idx_non_cas(i),idx_non_cas(j),m) = delta_ij_non_cas(i,j,m) enddo enddo enddo endif END_PROVIDER BEGIN_PROVIDER [ double precision, h_matrix_dressed, (N_det,N_det) ] implicit none BEGIN_DOC ! Dressed H with Delta_ij END_DOC integer :: i, j do j=1,N_det do i=1,N_det h_matrix_dressed(i,j) = h_matrix_all_dets(i,j) + delta_ij(i,j,1) enddo enddo END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ] implicit none BEGIN_DOC ! Eigenvectors/values of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det CI_eigenvectors_dressed(i,j) = psi_coef(i,j) enddo enddo if (diag_algorithm == "Davidson") then stop 'use Lapack' ! call davidson_diag(psi_det,CI_eigenvectors_dressed,CI_electronic_energy_dressed, & ! size(CI_eigenvectors_dressed,1),N_det,N_states_diag,N_int,output_determinants) else if (diag_algorithm == "Lapack") then double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) allocate (eigenvectors(size(H_matrix_dressed,1),N_det)) allocate (eigenvalues(N_det)) call lapack_diag(eigenvalues,eigenvectors, & H_matrix_dressed,size(H_matrix_dressed,1),N_det) CI_electronic_energy_dressed(:) = 0.d0 do i=1,N_det CI_eigenvectors_dressed(i,1) = eigenvectors(i,1) enddo integer :: i_state double precision :: s2 i_state = 0 if (s2_eig) then do j=1,N_det call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) if(dabs(s2-expected_s2).le.0.3d0)then i_state += 1 do i=1,N_det CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(i_state) = eigenvalues(j) CI_eigenvectors_s2_dressed(i_state) = s2 endif if (i_state.ge.N_states_diag) then exit endif enddo else do j=1,N_states_diag call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) i_state += 1 do i=1,N_det CI_eigenvectors_dressed(i,i_state) = eigenvectors(i,j) enddo CI_electronic_energy_dressed(i_state) = eigenvalues(j) CI_eigenvectors_s2_dressed(i_state) = s2 enddo endif deallocate(eigenvectors,eigenvalues) endif END_PROVIDER BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ] implicit none BEGIN_DOC ! N_states lowest eigenvalues of the dressed CI matrix END_DOC integer :: j character*(8) :: st call write_time(output_determinants) do j=1,N_states_diag CI_energy_dressed(j) = CI_electronic_energy_dressed(j) + nuclear_repulsion enddo END_PROVIDER subroutine diagonalize_CI_dressed implicit none BEGIN_DOC ! Replace the coefficients of the CI states by the coefficients of the ! eigenstates of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det psi_coef(i,j) = CI_eigenvectors_dressed(i,j) enddo enddo SOFT_TOUCH psi_coef end