BEGIN_PROVIDER [ character*(64), diag_algorithm ] implicit none BEGIN_DOC ! Diagonalization algorithm (Davidson or Lapack) END_DOC if (N_det > N_det_max_jacobi) then diag_algorithm = "Davidson" else diag_algorithm = "Lapack" endif if (N_det < N_states_diag) then diag_algorithm = "Lapack" endif END_PROVIDER BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ] implicit none BEGIN_DOC ! N_states lowest eigenvalues of the CI matrix END_DOC integer :: j character*(8) :: st call write_time(output_determinants) do j=1,N_states_diag CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion write(st,'(I4)') j call write_double(output_determinants,CI_energy(j),'Energy of state '//trim(st)) call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st)) enddo END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ] BEGIN_DOC ! Eigenvectors/values of the CI matrix END_DOC implicit none double precision :: ovrlp,u_dot_v integer :: i_good_state integer, allocatable :: index_good_state_array(:) logical, allocatable :: good_state_array(:) double precision, allocatable :: s2_values_tmp(:) integer :: i_other_state double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) integer :: i_state double precision :: s2,e_0 integer :: i,j,k double precision, allocatable :: s2_eigvalues(:) double precision, allocatable :: e_array(:) integer, allocatable :: iorder(:) ! Guess values for the "N_states_diag" states of the CI_eigenvectors do j=1,min(N_states_diag,N_det) do i=1,N_det CI_eigenvectors(i,j) = psi_coef(i,j) enddo enddo do j=N_det+1,N_states_diag do i=1,N_det CI_eigenvectors(i,j) = 0.d0 enddo enddo if (diag_algorithm == "Davidson") then call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, & size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants) do j=1,N_states_diag call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j)) enddo else if (diag_algorithm == "Lapack") then allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) allocate (eigenvalues(N_det)) call lapack_diag(eigenvalues,eigenvectors, & H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) CI_electronic_energy(:) = 0.d0 if (s2_eig) then i_state = 0 allocate (s2_eigvalues(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det)) good_state_array = .False. do j=1,N_det call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) s2_eigvalues(j) = s2 ! Select at least n_states states with S^2 values closed to "expected_s2" if(dabs(s2-expected_s2).le.0.3d0)then i_state +=1 index_good_state_array(i_state) = j good_state_array(j) = .True. endif if(i_state.eq.N_states) then exit endif enddo if(i_state .ne.0)then ! Fill the first "i_state" states that have a correct S^2 value do j = 1, i_state do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,index_good_state_array(j)) enddo CI_electronic_energy(j) = eigenvalues(index_good_state_array(j)) CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j)) enddo i_other_state = 0 do j = 1, N_det if(good_state_array(j))cycle i_other_state +=1 if(i_state+i_other_state.gt.n_states_diag)then exit endif call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) do i=1,N_det CI_eigenvectors(i,i_state+i_other_state) = eigenvectors(i,j) enddo CI_electronic_energy(i_state+i_other_state) = eigenvalues(j) CI_eigenvectors_s2(i_state+i_other_state) = s2 enddo deallocate(index_good_state_array,good_state_array) else print*,'' print*,'!!!!!!!! WARNING !!!!!!!!!' print*,' Within the ',N_det,'determinants selected' print*,' and the ',N_states_diag,'states requested' print*,' We did not find any state with S^2 values close to ',expected_s2 print*,' We will then set the first N_states eigenvectors of the H matrix' print*,' as the CI_eigenvectors' print*,' You should consider more states and maybe ask for diagonalize_s2 to be .True. or just enlarge the CI space' print*,'' do j=1,min(N_states_diag,N_det) do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,j) enddo CI_electronic_energy(j) = eigenvalues(j) CI_eigenvectors_s2(j) = s2_eigvalues(j) enddo endif deallocate(s2_eigvalues) else ! Select the "N_states_diag" states of lowest energy do j=1,min(N_det,N_states_diag) call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,j) enddo CI_electronic_energy(j) = eigenvalues(j) CI_eigenvectors_s2(j) = s2 enddo endif deallocate(eigenvectors,eigenvalues) endif if(diagonalize_s2.and.n_states_diag > 1.and. n_det >= n_states_diag)then ! Diagonalizing S^2 within the "n_states_diag" states found allocate(s2_eigvalues(N_states_diag)) call diagonalize_s2_betweenstates(psi_det,CI_eigenvectors,n_det,size(psi_det,3),size(CI_eigenvectors,1),min(n_states_diag,n_det),s2_eigvalues) do j = 1, N_states_diag do i = 1, N_det psi_coef(i,j) = CI_eigenvectors(i,j) enddo enddo if(s2_eig)then ! Browsing the "n_states_diag" states and getting the lowest in energy "n_states" ones that have the S^2 value ! closer to the "expected_s2" set as input allocate(index_good_state_array(N_det),good_state_array(N_det)) good_state_array = .False. i_state = 0 do j = 1, N_states_diag if(dabs(s2_eigvalues(j)-expected_s2).le.0.3d0)then good_state_array(j) = .True. i_state +=1 index_good_state_array(i_state) = j endif enddo ! Sorting the i_state good states by energy allocate(e_array(i_state),iorder(i_state)) do j = 1, i_state do i = 1, N_det CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(j)) enddo CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(j)) call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) CI_electronic_energy(j) = e_0 e_array(j) = e_0 iorder(j) = j enddo call dsort(e_array,iorder,i_state) do j = 1, i_state CI_electronic_energy(j) = e_array(j) CI_eigenvectors_s2(j) = s2_eigvalues(index_good_state_array(iorder(j))) do i = 1, N_det CI_eigenvectors(i,j) = psi_coef(i,index_good_state_array(iorder(j))) enddo ! call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) ! print*,'e = ',CI_electronic_energy(j) ! print*,' = ',e_0 ! call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),s2) ! print*,'s^2 = ',CI_eigenvectors_s2(j) ! print*,'= ',s2 enddo deallocate(e_array,iorder) ! Then setting the other states without any specific energy order i_other_state = 0 do j = 1, N_states_diag if(good_state_array(j))cycle i_other_state +=1 do i = 1, N_det CI_eigenvectors(i,i_state + i_other_state) = psi_coef(i,j) enddo CI_eigenvectors_s2(i_state + i_other_state) = s2_eigvalues(j) call u0_H_u_0(e_0,CI_eigenvectors(1,i_state + i_other_state),n_det,psi_det,N_int) CI_electronic_energy(i_state + i_other_state) = e_0 enddo deallocate(index_good_state_array,good_state_array) else ! Sorting the N_states_diag by energy, whatever the S^2 value is allocate(e_array(n_states_diag),iorder(n_states_diag)) do j = 1, N_states_diag call u0_H_u_0(e_0,CI_eigenvectors(1,j),n_det,psi_det,N_int) e_array(j) = e_0 iorder(j) = j enddo call dsort(e_array,iorder,n_states_diag) do j = 1, N_states_diag CI_electronic_energy(j) = e_array(j) do i = 1, N_det CI_eigenvectors(i,j) = psi_coef(i,iorder(j)) enddo CI_eigenvectors_s2(j) = s2_eigvalues(iorder(j)) enddo deallocate(e_array,iorder) endif deallocate(s2_eigvalues) endif END_PROVIDER subroutine diagonalize_CI implicit none BEGIN_DOC ! Replace the coefficients of the CI states by the coefficients of the ! eigenstates of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det psi_coef(i,j) = CI_eigenvectors(i,j) enddo enddo SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors CI_eigenvectors_s2 end