use bitmasks double precision function integral8(i,j,k,l) implicit none integer, intent(in) :: i,j,k,l double precision, external :: get_mo_bielec_integral integer :: ii ii = l-mo_integrals_cache_min ii = ior(ii, k-mo_integrals_cache_min) ii = ior(ii, j-mo_integrals_cache_min) ii = ior(ii, i-mo_integrals_cache_min) if (iand(ii, -64) /= 0) then integral8 = get_mo_bielec_integral(i,j,k,l,mo_integrals_map) else ii = l-mo_integrals_cache_min ii = ior( ishft(ii,6), k-mo_integrals_cache_min) ii = ior( ishft(ii,6), j-mo_integrals_cache_min) ii = ior( ishft(ii,6), i-mo_integrals_cache_min) integral8 = mo_integrals_cache(ii) endif end function BEGIN_PROVIDER [ integer(1), psi_phasemask, (N_int*bit_kind_size, 2, N_det)] use bitmasks implicit none integer :: i do i=1, N_det call get_mask_phase(psi_selectors(1,1,i), psi_phasemask(1,1,i)) end do END_PROVIDER subroutine assert(cond, msg) character(*), intent(in) :: msg logical, intent(in) :: cond if(.not. cond) then print *, "assert fail: "//msg stop end if end subroutine subroutine get_mask_phase(det, phasemask) use bitmasks implicit none integer(bit_kind), intent(in) :: det(N_int, 2) integer(1), intent(out) :: phasemask(N_int*bit_kind_size, 2) integer :: s, ni, i logical :: change phasemask = 0_1 do s=1,2 change = .false. do ni=1,N_int do i=0,bit_kind_size-1 if(BTEST(det(ni, s), i)) change = .not. change if(change) phasemask((ni-1)*bit_kind_size + i + 1, s) = 1_1 end do end do end do end subroutine subroutine select_connected(i_generator,E0,pt2,b) use bitmasks use selection_types implicit none integer, intent(in) :: i_generator type(selection_buffer), intent(inout) :: b double precision, intent(inout) :: pt2(N_states) integer :: k,l double precision, intent(in) :: E0(N_states) integer(bit_kind) :: hole_mask(N_int,2), particle_mask(N_int,2) double precision :: fock_diag_tmp(2,mo_tot_num+1) call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int) do l=1,N_generators_bitmask do k=1,N_int hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole,l), psi_det_generators(k,1,i_generator)) hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole,l), psi_det_generators(k,2,i_generator)) particle_mask(k,1) = iand(generators_bitmask(k,1,s_part,l), not(psi_det_generators(k,1,i_generator)) ) particle_mask(k,2) = iand(generators_bitmask(k,2,s_part,l), not(psi_det_generators(k,2,i_generator)) ) enddo call select_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,b) call select_singles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,b) enddo end subroutine double precision function get_phase_bi(phasemask, s1, s2, h1, p1, h2, p2) use bitmasks implicit none integer(1), intent(in) :: phasemask(N_int*bit_kind_size, 2) integer, intent(in) :: s1, s2, h1, h2, p1, p2 logical :: change integer(1) :: np double precision, parameter :: res(0:1) = (/1d0, -1d0/) np = phasemask(h1,s1) + phasemask(p1,s1) + phasemask(h2,s2) + phasemask(p2,s2) if(p1 < h1) np = np + 1_1 if(p2 < h2) np = np + 1_1 if(s1 == s2 .and. max(h1, p1) > min(h2, p2)) np = np + 1_1 get_phase_bi = res(iand(np,1_1)) end subroutine ! Selection single ! ---------------- subroutine select_singles(i_gen,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,buf) use bitmasks use selection_types implicit none BEGIN_DOC ! Select determinants connected to i_det by H END_DOC integer, intent(in) :: i_gen integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2) double precision, intent(in) :: fock_diag_tmp(mo_tot_num) double precision, intent(in) :: E0(N_states) double precision, intent(inout) :: pt2(N_states) type(selection_buffer), intent(inout) :: buf double precision :: vect(N_states, mo_tot_num) logical :: bannedOrb(mo_tot_num) integer :: i, j, k integer :: h1,h2,s1,s2,i1,i2,ib,sp integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2) logical :: fullMatch, ok do k=1,N_int hole (k,1) = iand(psi_det_generators(k,1,i_gen), hole_mask(k,1)) hole (k,2) = iand(psi_det_generators(k,2,i_gen), hole_mask(k,2)) particle(k,1) = iand(not(psi_det_generators(k,1,i_gen)), particle_mask(k,1)) particle(k,2) = iand(not(psi_det_generators(k,2,i_gen)), particle_mask(k,2)) enddo ! Create lists of holes and particles ! ----------------------------------- integer :: N_holes(2), N_particles(2) integer :: hole_list(N_int*bit_kind_size,2) integer :: particle_list(N_int*bit_kind_size,2) call bitstring_to_list_ab(hole , hole_list , N_holes , N_int) call bitstring_to_list_ab(particle, particle_list, N_particles, N_int) do sp=1,2 do i=1, N_holes(sp) h1 = hole_list(i,sp) call apply_hole(psi_det_generators(1,1,i_gen), sp, h1, mask, ok, N_int) bannedOrb = .true. do j=1,N_particles(sp) bannedOrb(particle_list(j, sp)) = .false. end do call spot_hasBeen(mask, sp, psi_selectors, i_gen, N_det, bannedOrb, fullMatch) if(fullMatch) cycle vect = 0d0 call splash_p(mask, sp, psi_selectors(1,1,i_gen), psi_phasemask(1,1,i_gen), psi_selectors_coef_transp(1,i_gen), N_det_selectors - i_gen + 1, bannedOrb, vect) call fill_buffer_single(i_gen, sp, h1, bannedOrb, fock_diag_tmp, E0, pt2, vect, buf) end do enddo end subroutine subroutine fill_buffer_single(i_generator, sp, h1, bannedOrb, fock_diag_tmp, E0, pt2, vect, buf) use bitmasks use selection_types implicit none integer, intent(in) :: i_generator, sp, h1 double precision, intent(in) :: vect(N_states, mo_tot_num) logical, intent(in) :: bannedOrb(mo_tot_num) double precision, intent(in) :: fock_diag_tmp(mo_tot_num) double precision, intent(in) :: E0(N_states) double precision, intent(inout) :: pt2(N_states) type(selection_buffer), intent(inout) :: buf logical :: ok integer :: s1, s2, p1, p2, ib, istate integer(bit_kind) :: mask(N_int, 2), det(N_int, 2) double precision :: e_pert, delta_E, val, Hii, max_e_pert, tmp double precision, external :: diag_H_mat_elem_fock call apply_hole(psi_det_generators(1,1,i_generator), sp, h1, mask, ok, N_int) do p1=1,mo_tot_num if(bannedOrb(p1)) cycle if(vect(1, p1) == 0d0) cycle call apply_particle(mask, sp, p1, det, ok, N_int) Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int) max_e_pert = 0d0 do istate=1,N_states val = vect(istate, p1) + vect(istate, p1) delta_E = E0(istate) - Hii tmp = dsqrt(delta_E * delta_E + val * val) if (delta_E < 0.d0) then tmp = -tmp endif e_pert = 0.5d0 * ( tmp - delta_E) pt2(istate) += e_pert if(dabs(e_pert) > dabs(max_e_pert)) max_e_pert = e_pert end do if(dabs(max_e_pert) > buf%mini) then call add_to_selection_buffer(buf, det, max_e_pert) endif end do end subroutine subroutine splash_p(mask, sp, det, phasemask, coefs, N_sel, bannedOrb, vect) use bitmasks implicit none integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int,2,N_sel) integer(1), intent(in) :: phasemask(N_int*bit_kind_size, 2, N_sel) double precision, intent(in) :: coefs(N_states, N_sel) integer, intent(in) :: sp, N_sel logical, intent(inout) :: bannedOrb(mo_tot_num) double precision, intent(inout) :: vect(N_states, mo_tot_num) integer :: i, j, h(0:2,2), p(0:3,2), nt integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2) do i=1,N_int negMask(i,1) = not(mask(i,1)) negMask(i,2) = not(mask(i,2)) end do do i=1, N_sel nt = 0 do j=1,N_int mobMask(j,1) = iand(negMask(j,1), det(j,1,i)) mobMask(j,2) = iand(negMask(j,2), det(j,2,i)) nt += popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) end do if(nt > 3) cycle do j=1,N_int perMask(j,1) = iand(mask(j,1), not(det(j,1,i))) perMask(j,2) = iand(mask(j,2), not(det(j,2,i))) end do call bitstring_to_list(perMask(1,1), h(1,1), h(0,1), N_int) call bitstring_to_list(perMask(1,2), h(1,2), h(0,2), N_int) call bitstring_to_list(mobMask(1,1), p(1,1), p(0,1), N_int) call bitstring_to_list(mobMask(1,2), p(1,2), p(0,2), N_int) if(nt == 3) then call get_m2(det(1,1,i), phasemask(1,1,i), bannedOrb, vect, mask, h, p, sp, coefs(1, i)) else if(nt == 2) then call get_m1(det(1,1,i), phasemask(1,1,i), bannedOrb, vect, mask, h, p, sp, coefs(1, i)) else call get_m0(det(1,1,i), phasemask(1,1,i), bannedOrb, vect, mask, h, p, sp, coefs(1, i)) end if end do end subroutine subroutine get_m2(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2) integer(1), intent(in) :: phasemask(N_int*bit_kind_size, 2) logical, intent(in) :: bannedOrb(mo_tot_num) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: vect(N_states, mo_tot_num) integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2) integer :: i, j, h1, h2, p1, p2, sfix, hfix, pfix, hmob, pmob, puti double precision :: hij double precision, external :: get_phase_bi, integral8 integer, parameter :: turn3_2(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/)) integer, parameter :: turn2(2) = (/2,1/) if(h(0,sp) == 2) then h1 = h(1, sp) h2 = h(2, sp) do i=1,3 puti = p(i, sp) if(bannedOrb(puti)) cycle p1 = p(turn3_2(1,i), sp) p2 = p(turn3_2(2,i), sp) hij = integral8(p1, p2, h1, h2) - integral8(p2, p1, h1, h2) hij *= get_phase_bi(phasemask, sp, sp, h1, p1, h2, p2) vect(:, puti) += hij * coefs end do else if(h(0,sp) == 1) then sfix = turn2(sp) hfix = h(1,sfix) pfix = p(1,sfix) hmob = h(1,sp) do j=1,2 puti = p(j, sp) if(bannedOrb(puti)) cycle pmob = p(turn2(j), sp) hij = integral8(pfix, pmob, hfix, hmob) hij *= get_phase_bi(phasemask, sp, sfix, hmob, pmob, hfix, pfix) vect(:, puti) += hij * coefs end do else puti = p(1,sp) if(.not. bannedOrb(puti)) then sfix = turn2(sp) p1 = p(1,sfix) p2 = p(2,sfix) h1 = h(1,sfix) h2 = h(2,sfix) hij = (integral8(p1,p2,h1,h2) - integral8(p2,p1,h1,h2)) hij *= get_phase_bi(phasemask, sfix, sfix, h1, p1, h2, p2) vect(:, puti) += hij * coefs end if end if end subroutine subroutine get_m1(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2) integer(1), intent(in) :: phasemask(N_int*bit_kind_size, 2) logical, intent(in) :: bannedOrb(mo_tot_num) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: vect(N_states, mo_tot_num) integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2) integer :: i, hole, p1, p2, sh logical :: ok, lbanned(mo_tot_num) integer(bit_kind) :: det(N_int, 2) double precision :: hij double precision, external :: get_phase_bi, integral8 lbanned = bannedOrb sh = 1 if(h(0,2) == 1) sh = 2 hole = h(1, sh) lbanned(p(1,sp)) = .true. if(p(0,sp) == 2) lbanned(p(2,sp)) = .true. !print *, "SPm1", sp, sh p1 = p(1, sp) if(sp == sh) then p2 = p(2, sp) lbanned(p2) = .true. do i=1,hole-1 if(lbanned(i)) cycle hij = (integral8(p1, p2, i, hole) - integral8(p2, p1, i, hole)) hij *= get_phase_bi(phasemask, sp, sp, i, p1, hole, p2) vect(:,i) += hij * coefs end do do i=hole+1,mo_tot_num if(lbanned(i)) cycle hij = (integral8(p1, p2, hole, i) - integral8(p2, p1, hole, i)) hij *= get_phase_bi(phasemask, sp, sp, hole, p1, i, p2) vect(:,i) += hij * coefs end do call apply_particle(mask, sp, p2, det, ok, N_int) call i_h_j(gen, det, N_int, hij) vect(:, p2) += hij * coefs else p2 = p(1, sh) do i=1,mo_tot_num if(lbanned(i)) cycle hij = integral8(p1, p2, i, hole) hij *= get_phase_bi(phasemask, sp, sh, i, p1, hole, p2) vect(:,i) += hij * coefs end do end if call apply_particle(mask, sp, p1, det, ok, N_int) call i_h_j(gen, det, N_int, hij) vect(:, p1) += hij * coefs end subroutine subroutine get_m0(gen, phasemask, bannedOrb, vect, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2) integer(1), intent(in) :: phasemask(N_int*bit_kind_size, 2) logical, intent(in) :: bannedOrb(mo_tot_num) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: vect(N_states, mo_tot_num) integer, intent(in) :: sp, h(0:2, 2), p(0:3, 2) integer :: i logical :: ok, lbanned(mo_tot_num) integer(bit_kind) :: det(N_int, 2) double precision :: hij lbanned = bannedOrb lbanned(p(1,sp)) = .true. do i=1,mo_tot_num if(lbanned(i)) cycle call apply_particle(mask, sp, i, det, ok, N_int) call i_h_j(gen, det, N_int, hij) vect(:, i) += hij * coefs end do end subroutine subroutine spot_hasBeen(mask, sp, det, i_gen, N, banned, fullMatch) use bitmasks implicit none integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N) integer, intent(in) :: i_gen, N, sp logical, intent(inout) :: banned(mo_tot_num) logical, intent(out) :: fullMatch integer :: i, j, na, nb, list(3), nt integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2) fullMatch = .false. do i=1,N_int negMask(i,1) = not(mask(i,1)) negMask(i,2) = not(mask(i,2)) end do do i=1, N nt = 0 do j=1, N_int myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1)) myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2)) nt += popcnt(myMask(j, 1)) + popcnt(myMask(j, 2)) end do if(nt > 3) cycle if(nt <= 2 .and. i < i_gen) then fullMatch = .true. return end if call bitstring_to_list(myMask(1,sp), list(1), na, N_int) if(nt == 3 .and. i < i_gen) then do j=1,na banned(list(j)) = .true. end do else if(nt == 1 .and. na == 1) then banned(list(1)) = .true. end if end do end subroutine ! Selection double ! ---------------- subroutine select_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,buf) use bitmasks use selection_types implicit none integer, intent(in) :: i_generator integer(bit_kind), intent(in) :: hole_mask(N_int,2), particle_mask(N_int,2) double precision, intent(in) :: fock_diag_tmp(mo_tot_num) double precision, intent(in) :: E0(N_states) double precision, intent(inout) :: pt2(N_states) type(selection_buffer), intent(inout) :: buf double precision :: mat(N_states, mo_tot_num, mo_tot_num) integer :: h1,h2,s1,s2,s3,i1,i2,ib,sp,k,i,j,nt,ii integer(bit_kind) :: hole(N_int,2), particle(N_int,2), mask(N_int, 2), pmask(N_int, 2) logical :: fullMatch, ok integer(bit_kind) :: mobMask(N_int, 2), negMask(N_int, 2) integer,allocatable :: preinteresting(:), prefullinteresting(:), interesting(:), fullinteresting(:) integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :) allocate(minilist(N_int, 2, N_det_selectors), fullminilist(N_int, 2, N_det)) allocate(preinteresting(0:N_det_selectors), prefullinteresting(0:N_det), interesting(0:N_det_selectors), fullinteresting(0:N_det)) do k=1,N_int hole (k,1) = iand(psi_det_generators(k,1,i_generator), hole_mask(k,1)) hole (k,2) = iand(psi_det_generators(k,2,i_generator), hole_mask(k,2)) particle(k,1) = iand(not(psi_det_generators(k,1,i_generator)), particle_mask(k,1)) particle(k,2) = iand(not(psi_det_generators(k,2,i_generator)), particle_mask(k,2)) enddo integer :: N_holes(2), N_particles(2) integer :: hole_list(N_int*bit_kind_size,2) integer :: particle_list(N_int*bit_kind_size,2) call bitstring_to_list_ab(hole , hole_list , N_holes , N_int) call bitstring_to_list_ab(particle, particle_list, N_particles, N_int) preinteresting(0) = 0 prefullinteresting(0) = 0 do i=1,N_int negMask(i,1) = not(psi_det_generators(i,1,i_generator)) negMask(i,2) = not(psi_det_generators(i,2,i_generator)) end do do i=1,N_det nt = 0 do j=1,N_int mobMask(j,1) = iand(negMask(j,1), psi_selectors(j,1,i)) mobMask(j,2) = iand(negMask(j,2), psi_selectors(j,2,i)) nt += popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) end do if(nt <= 4) then if(i <= N_det_selectors) then preinteresting(0) += 1 preinteresting(preinteresting(0)) = i else if(nt <= 2) then prefullinteresting(0) += 1 prefullinteresting(prefullinteresting(0)) = i end if end if end do do s1=1,2 do i1=N_holes(s1),1,-1 ! Generate low excitations first h1 = hole_list(i1,s1) call apply_hole(psi_det_generators(1,1,i_generator), s1,h1, pmask, ok, N_int) do i=1,N_int negMask(i,1) = not(pmask(i,1)) negMask(i,2) = not(pmask(i,2)) end do interesting(0) = 0 fullinteresting(0) = 0 do ii=1,preinteresting(0) i = preinteresting(ii) nt = 0 do j=1,N_int mobMask(j,1) = iand(negMask(j,1), psi_selectors(j,1,i)) mobMask(j,2) = iand(negMask(j,2), psi_selectors(j,2,i)) nt += popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) end do if(nt <= 4) then interesting(0) += 1 interesting(interesting(0)) = i minilist(:,:,interesting(0)) = psi_selectors(:,:,i) if(nt <= 2) then fullinteresting(0) += 1 fullinteresting(fullinteresting(0)) = i fullminilist(:,:,fullinteresting(0)) = psi_selectors(:,:,i) end if end if end do do ii=1,prefullinteresting(0) i = prefullinteresting(ii) nt = 0 do j=1,N_int mobMask(j,1) = iand(negMask(j,1), psi_selectors(j,1,i)) mobMask(j,2) = iand(negMask(j,2), psi_selectors(j,2,i)) nt += popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) end do if(nt <= 2) then fullinteresting(0) += 1 fullinteresting(fullinteresting(0)) = i fullminilist(:,:,fullinteresting(0)) = psi_selectors(:,:,i) end if end do do s2=s1,2 sp = s1 if(s1 /= s2) sp = 3 ib = 1 if(s1 == s2) ib = i1+1 do i2=N_holes(s2),ib,-1 ! Generate low excitations first h2 = hole_list(i2,s2) call apply_hole(pmask, s2,h2, mask, ok, N_int) logical :: banned(mo_tot_num, mo_tot_num,2) logical :: bannedOrb(mo_tot_num, 2) banned = .false. call spot_isinwf(mask, fullminilist, i_generator, fullinteresting(0), banned, fullMatch, fullinteresting) if(fullMatch) cycle bannedOrb(1:mo_tot_num, 1:2) = .true. do s3=1,2 do i=1,N_particles(s3) bannedOrb(particle_list(i,s3), s3) = .false. enddo enddo mat = 0d0 call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting) call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, mat, buf) enddo enddo enddo enddo end subroutine subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, mat, buf) use bitmasks use selection_types implicit none integer, intent(in) :: i_generator, sp, h1, h2 double precision, intent(in) :: mat(N_states, mo_tot_num, mo_tot_num) logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num) double precision, intent(in) :: fock_diag_tmp(mo_tot_num) double precision, intent(in) :: E0(N_states) double precision, intent(inout) :: pt2(N_states) type(selection_buffer), intent(inout) :: buf logical :: ok integer :: s1, s2, p1, p2, ib, j, istate integer(bit_kind) :: mask(N_int, 2), det(N_int, 2) double precision :: e_pert, delta_E, val, Hii, max_e_pert,tmp double precision, external :: diag_H_mat_elem_fock logical, external :: detEq if(sp == 3) then s1 = 1 s2 = 2 else s1 = sp s2 = sp end if call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int) do p1=1,mo_tot_num if(bannedOrb(p1, s1)) cycle ib = 1 if(sp /= 3) ib = p1+1 do p2=ib,mo_tot_num if(bannedOrb(p2, s2)) cycle if(banned(p1,p2)) cycle if(mat(1, p1, p2) == 0d0) cycle call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int) logical, external :: is_in_wavefunction ! if (is_in_wavefunction(det,N_int)) then ! stop 'is_in_wf' ! cycle ! endif if (do_ddci) then logical, external :: is_a_two_holes_two_particles if (is_a_two_holes_two_particles(det)) then cycle endif endif Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int) max_e_pert = 0d0 do istate=1,N_states delta_E = E0(istate) - Hii val = mat(istate, p1, p2) + mat(istate, p1, p2) tmp = dsqrt(delta_E * delta_E + val * val) if (delta_E < 0.d0) then tmp = -tmp endif e_pert = 0.5d0 * ( tmp - delta_E) pt2(istate) = pt2(istate) + e_pert max_e_pert = min(e_pert,max_e_pert) end do if(dabs(max_e_pert) > buf%mini) then call add_to_selection_buffer(buf, det, max_e_pert) end if end do end do end subroutine subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting) use bitmasks implicit none integer, intent(in) :: interesting(0:N_sel) integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N_sel) integer, intent(in) :: sp, i_gen, N_sel logical, intent(inout) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num, 2) double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num) integer :: i, ii, j, k, l, h(0:2,2), p(0:4,2), nt integer(bit_kind) :: perMask(N_int, 2), mobMask(N_int, 2), negMask(N_int, 2) ! logical :: bandon ! ! bandon = .false. mat = 0d0 do i=1,N_int negMask(i,1) = not(mask(i,1)) negMask(i,2) = not(mask(i,2)) end do do i=1, N_sel ! interesting(0) !i = interesting(ii) nt = 0 do j=1,N_int mobMask(j,1) = iand(negMask(j,1), det(j,1,i)) mobMask(j,2) = iand(negMask(j,2), det(j,2,i)) nt += popcnt(mobMask(j, 1)) + popcnt(mobMask(j, 2)) end do if(nt > 4) cycle do j=1,N_int perMask(j,1) = iand(mask(j,1), not(det(j,1,i))) perMask(j,2) = iand(mask(j,2), not(det(j,2,i))) end do call bitstring_to_list(perMask(1,1), h(1,1), h(0,1), N_int) call bitstring_to_list(perMask(1,2), h(1,2), h(0,2), N_int) call bitstring_to_list(mobMask(1,1), p(1,1), p(0,1), N_int) call bitstring_to_list(mobMask(1,2), p(1,2), p(0,2), N_int) if(interesting(i) < i_gen) then if(nt == 4) call past_d2(banned, p, sp) if(nt == 3) call past_d1(bannedOrb, p) else if(interesting(i) == i_gen) then ! bandon = .true. if(sp == 3) then banned(:,:,2) = transpose(banned(:,:,1)) else do k=1,mo_tot_num do l=k+1,mo_tot_num banned(l,k,1) = banned(k,l,1) end do end do end if end if if(nt == 4) then call get_d2(det(1,1,i), psi_phasemask(1,1,interesting(i)), bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) else if(nt == 3) then call get_d1(det(1,1,i), psi_phasemask(1,1,interesting(i)), bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) else call get_d0(det(1,1,i), psi_phasemask(1,1,interesting(i)), bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i))) end if end if end do end subroutine subroutine get_d2(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2) integer(1), intent(in) :: phasemask(N_int*bit_kind_size, 2) logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num,2) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num) integer, intent(in) :: h(0:2,2), p(0:4,2), sp double precision, external :: get_phase_bi, integral8 integer :: i, j, tip, ma, mi, puti, putj integer :: h1, h2, p1, p2, i1, i2 double precision :: hij, phase integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/)) integer, parameter :: turn2(2) = (/2, 1/) integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/)) integer :: bant bant = 1 tip = p(0,1) * p(0,2) ma = sp if(p(0,1) > p(0,2)) ma = 1 if(p(0,1) < p(0,2)) ma = 2 mi = mod(ma, 2) + 1 if(sp == 3) then if(ma == 2) bant = 2 if(tip == 3) then puti = p(1, mi) do i = 1, 3 putj = p(i, ma) if(banned(putj,puti,bant)) cycle i1 = turn3(1,i) i2 = turn3(2,i) p1 = p(i1, ma) p2 = p(i2, ma) h1 = h(1, ma) h2 = h(2, ma) hij = (integral8(p1, p2, h1, h2) - integral8(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2) if(ma == 1) then mat(:, putj, puti) += coefs * hij else mat(:, puti, putj) += coefs * hij end if end do else do i = 1,2 do j = 1,2 puti = p(i, 1) putj = p(j, 2) if(banned(puti,putj,bant)) cycle p1 = p(turn2(i), 1) p2 = p(turn2(j), 2) h1 = h(1,1) h2 = h(1,2) hij = integral8(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2) mat(:, puti, putj) += coefs * hij end do end do end if else if(tip == 0) then h1 = h(1, ma) h2 = h(2, ma) do i=1,3 puti = p(i, ma) do j=i+1,4 putj = p(j, ma) if(banned(puti,putj,1)) cycle i1 = turn2d(1, i, j) i2 = turn2d(2, i, j) p1 = p(i1, ma) p2 = p(i2, ma) hij = (integral8(p1, p2, h1, h2) - integral8(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2) mat(:, puti, putj) += coefs * hij end do end do else if(tip == 3) then h1 = h(1, mi) h2 = h(1, ma) p1 = p(1, mi) do i=1,3 puti = p(turn3(1,i), ma) putj = p(turn3(2,i), ma) if(banned(puti,putj,1)) cycle p2 = p(i, ma) hij = integral8(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2) mat(:, min(puti, putj), max(puti, putj)) += coefs * hij end do else ! tip == 4 puti = p(1, sp) putj = p(2, sp) if(.not. banned(puti,putj,1)) then p1 = p(1, mi) p2 = p(2, mi) h1 = h(1, mi) h2 = h(2, mi) hij = (integral8(p1, p2, h1, h2) - integral8(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2) mat(:, puti, putj) += coefs * hij end if end if end if end subroutine subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2) integer(1),intent(in) :: phasemask(N_int*bit_kind_size, 2) logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num,2) integer(bit_kind) :: det(N_int, 2) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num) double precision :: hij, tmp_row(N_states, mo_tot_num), tmp_row2(N_states, mo_tot_num) double precision, external :: get_phase_bi, integral8 logical :: lbanned(mo_tot_num, 2), ok integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j, hfix, pfix, h1, h2, p1, p2, ib integer, intent(in) :: h(0:2,2), p(0:4,2), sp integer, parameter :: turn2(2) = (/2,1/) integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/)) integer :: bant lbanned = bannedOrb do i=1, p(0,1) lbanned(p(i,1), 1) = .true. end do do i=1, p(0,2) lbanned(p(i,2), 2) = .true. end do ma = 1 if(p(0,2) >= 2) ma = 2 mi = turn2(ma) bant = 1 if(sp == 3) then !move MA if(ma == 2) bant = 2 puti = p(1,mi) hfix = h(1,ma) p1 = p(1,ma) p2 = p(2,ma) if(.not. bannedOrb(puti, mi)) then tmp_row = 0d0 do putj=1, hfix-1 if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle hij = (integral8(p1, p2, putj, hfix)-integral8(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2) tmp_row(1:N_states,putj) += hij * coefs(1:N_states) end do do putj=hfix+1, mo_tot_num if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle hij = (integral8(p1, p2, hfix, putj)-integral8(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2) tmp_row(1:N_states,putj) += hij * coefs(1:N_states) end do if(ma == 1) then mat(1:N_states,1:mo_tot_num,puti) += tmp_row(1:N_states,1:mo_tot_num) else mat(1:N_states,puti,1:mo_tot_num) += tmp_row(1:N_states,1:mo_tot_num) end if end if !MOVE MI pfix = p(1,mi) tmp_row = 0d0 tmp_row2 = 0d0 do puti=1,mo_tot_num if(lbanned(puti,mi)) cycle !p1 fixed putj = p1 if(.not. banned(putj,puti,bant)) then hij = integral8(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix) tmp_row(:,puti) += hij * coefs end if putj = p2 if(.not. banned(putj,puti,bant)) then hij = integral8(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix) tmp_row2(:,puti) += hij * coefs end if end do if(mi == 1) then mat(:,:,p1) += tmp_row(:,:) mat(:,:,p2) += tmp_row2(:,:) else mat(:,p1,:) += tmp_row(:,:) mat(:,p2,:) += tmp_row2(:,:) end if else if(p(0,ma) == 3) then do i=1,3 hfix = h(1,ma) puti = p(i, ma) p1 = p(turn3(1,i), ma) p2 = p(turn3(2,i), ma) tmp_row = 0d0 do putj=1,hfix-1 if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle hij = (integral8(p1, p2, putj, hfix)-integral8(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2) tmp_row(:,putj) += hij * coefs end do do putj=hfix+1,mo_tot_num if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle hij = (integral8(p1, p2, hfix, putj)-integral8(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2) tmp_row(:,putj) += hij * coefs end do mat(:, :puti-1, puti) += tmp_row(:,:puti-1) mat(:, puti, puti:) += tmp_row(:,puti:) end do else hfix = h(1,mi) pfix = p(1,mi) p1 = p(1,ma) p2 = p(2,ma) tmp_row = 0d0 tmp_row2 = 0d0 do puti=1,mo_tot_num if(lbanned(puti,ma)) cycle putj = p2 if(.not. banned(puti,putj,1)) then hij = integral8(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1) tmp_row(:,puti) += hij * coefs end if putj = p1 if(.not. banned(puti,putj,1)) then hij = integral8(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2) tmp_row2(:,puti) += hij * coefs end if end do mat(:,:p2-1,p2) += tmp_row(:,:p2-1) mat(:,p2,p2:) += tmp_row(:,p2:) mat(:,:p1-1,p1) += tmp_row2(:,:p1-1) mat(:,p1,p1:) += tmp_row2(:,p1:) end if end if !! MONO if(sp == 3) then s1 = 1 s2 = 2 else s1 = sp s2 = sp end if do i1=1,p(0,s1) ib = 1 if(s1 == s2) ib = i1+1 do i2=ib,p(0,s2) p1 = p(i1,s1) p2 = p(i2,s2) if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int) call i_h_j(gen, det, N_int, hij) mat(:, p1, p2) += coefs * hij end do end do end subroutine subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs) use bitmasks implicit none integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2) integer(1), intent(in) :: phasemask(N_int*bit_kind_size, 2) logical, intent(in) :: bannedOrb(mo_tot_num, 2), banned(mo_tot_num, mo_tot_num,2) integer(bit_kind) :: det(N_int, 2) double precision, intent(in) :: coefs(N_states) double precision, intent(inout) :: mat(N_states, mo_tot_num, mo_tot_num) integer, intent(in) :: h(0:2,2), p(0:4,2), sp integer :: i, j, s, h1, h2, p1, p2, puti, putj double precision :: hij, phase double precision, external :: get_phase_bi, integral8 logical :: ok integer :: bant bant = 1 if(sp == 3) then ! AB h1 = p(1,1) h2 = p(1,2) do p1=1, mo_tot_num if(bannedOrb(p1, 1)) cycle do p2=1, mo_tot_num if(bannedOrb(p2,2)) cycle if(banned(p1, p2, bant)) cycle ! rentable? if(p1 == h1 .or. p2 == h2) then call apply_particles(mask, 1,p1,2,p2, det, ok, N_int) call i_h_j(gen, det, N_int, hij) else hij = integral8(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2) phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2) end if mat(:, p1, p2) += coefs(:) * hij end do end do else ! AA BB p1 = p(1,sp) p2 = p(2,sp) do puti=1, mo_tot_num if(bannedOrb(puti, sp)) cycle do putj=puti+1, mo_tot_num if(bannedOrb(putj, sp)) cycle if(banned(puti, putj, bant)) cycle ! rentable? if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int) call i_h_j(gen, det, N_int, hij) else hij = (integral8(p1, p2, puti, putj) - integral8(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2) end if mat(:, puti, putj) += coefs(:) * hij end do end do end if end subroutine subroutine past_d1(bannedOrb, p) use bitmasks implicit none logical, intent(inout) :: bannedOrb(mo_tot_num, 2) integer, intent(in) :: p(0:4, 2) integer :: i,s do s = 1, 2 do i = 1, p(0, s) bannedOrb(p(i, s), s) = .true. end do end do end subroutine subroutine past_d2(banned, p, sp) use bitmasks implicit none logical, intent(inout) :: banned(mo_tot_num, mo_tot_num) integer, intent(in) :: p(0:4, 2), sp integer :: i,j if(sp == 3) then do i=1,p(0,1) do j=1,p(0,2) banned(p(i,1), p(j,2)) = .true. end do end do else do i=1,p(0, sp) do j=1,i-1 banned(p(j,sp), p(i,sp)) = .true. banned(p(i,sp), p(j,sp)) = .true. end do end do end if end subroutine subroutine spot_isinwf(mask, det, i_gen, N, banned, fullMatch, interesting) use bitmasks implicit none integer, intent(in) :: interesting(0:N) integer(bit_kind),intent(in) :: mask(N_int, 2), det(N_int, 2, N) integer, intent(in) :: i_gen, N logical, intent(inout) :: banned(mo_tot_num, mo_tot_num) logical, intent(out) :: fullMatch integer :: i, j, na, nb, list(3) integer(bit_kind) :: myMask(N_int, 2), negMask(N_int, 2) fullMatch = .false. do i=1,N_int negMask(i,1) = not(mask(i,1)) negMask(i,2) = not(mask(i,2)) end do genl : do i=1, N do j=1, N_int if(iand(det(j,1,i), mask(j,1)) /= mask(j, 1)) cycle genl if(iand(det(j,2,i), mask(j,2)) /= mask(j, 2)) cycle genl end do if(interesting(i) < i_gen) then fullMatch = .true. return end if do j=1, N_int myMask(j, 1) = iand(det(j, 1, i), negMask(j, 1)) myMask(j, 2) = iand(det(j, 2, i), negMask(j, 2)) end do call bitstring_to_list(myMask(1,1), list(1), na, N_int) call bitstring_to_list(myMask(1,2), list(na+1), nb, N_int) banned(list(1), list(2)) = .true. end do genl end subroutine subroutine ZMQ_selection(N_in, pt2) use f77_zmq use selection_types implicit none character*(512) :: task integer(ZMQ_PTR) :: zmq_to_qp_run_socket integer, intent(in) :: N_in type(selection_buffer) :: b integer :: i, N integer, external :: omp_get_thread_num double precision, intent(out) :: pt2(N_states) if (.True.) then PROVIDE pt2_e0_denominator N = max(N_in,1) provide nproc call new_parallel_job(zmq_to_qp_run_socket,"selection") call zmq_put_psi(zmq_to_qp_run_socket,1,pt2_e0_denominator,size(pt2_e0_denominator)) call zmq_set_running(zmq_to_qp_run_socket) call create_selection_buffer(N, N*2, b) endif integer :: i_generator, i_generator_start, i_generator_max, step step = int(5000000.d0 / dble(N_int * N_states * elec_num * elec_num * mo_tot_num * mo_tot_num )) step = max(1,step) do i= 1, N_det_generators,step i_generator_start = i i_generator_max = min(i+step-1,N_det_generators) write(task,*) i_generator_start, i_generator_max, 1, N call add_task_to_taskserver(zmq_to_qp_run_socket,task) end do !$OMP PARALLEL DEFAULT(shared) SHARED(b, pt2) PRIVATE(i) NUM_THREADS(nproc+1) i = omp_get_thread_num() if (i==0) then call selection_collector(b, pt2) else call sleep(1) call selection_slave_inproc(i) endif !$OMP END PARALLEL call end_parallel_job(zmq_to_qp_run_socket, 'selection') if (N_in > 0) then call fill_H_apply_buffer_no_selection(b%cur,b%det,N_int,0) !!! PAS DE ROBIN call copy_H_apply_buffer_to_wf() if (s2_eig) then call make_s2_eigenfunction endif endif end subroutine subroutine selection_slave_inproc(i) implicit none integer, intent(in) :: i call run_selection_slave(1,i,pt2_e0_denominator) end subroutine selection_collector(b, pt2) use f77_zmq use selection_types use bitmasks implicit none type(selection_buffer), intent(inout) :: b double precision, intent(out) :: pt2(N_states) double precision :: pt2_mwen(N_states) integer(ZMQ_PTR),external :: new_zmq_to_qp_run_socket integer(ZMQ_PTR) :: zmq_to_qp_run_socket integer(ZMQ_PTR), external :: new_zmq_pull_socket integer(ZMQ_PTR) :: zmq_socket_pull integer :: msg_size, rc, more integer :: acc, i, j, robin, N, ntask double precision, allocatable :: val(:) integer(bit_kind), allocatable :: det(:,:,:) integer, allocatable :: task_id(:) integer :: done real :: time, time0 zmq_to_qp_run_socket = new_zmq_to_qp_run_socket() zmq_socket_pull = new_zmq_pull_socket() allocate(val(b%N), det(N_int, 2, b%N), task_id(N_det)) done = 0 more = 1 pt2(:) = 0d0 call CPU_TIME(time0) do while (more == 1) call pull_selection_results(zmq_socket_pull, pt2_mwen, val(1), det(1,1,1), N, task_id, ntask) pt2 += pt2_mwen do i=1, N call add_to_selection_buffer(b, det(1,1,i), val(i)) end do do i=1, ntask if(task_id(i) == 0) then print *, "Error in collector" endif call zmq_delete_task(zmq_to_qp_run_socket,zmq_socket_pull,task_id(i),more) end do done += ntask call CPU_TIME(time) ! print *, "DONE" , done, time - time0 end do call end_zmq_to_qp_run_socket(zmq_to_qp_run_socket) call end_zmq_pull_socket(zmq_socket_pull) call sort_selection_buffer(b) end subroutine