BEGIN_PROVIDER [ character*(64), diag_algorithm ] implicit none BEGIN_DOC ! Diagonalization algorithm (Davidson or Lapack) END_DOC if (N_det > N_det_max_jacobi) then diag_algorithm = "Davidson" else diag_algorithm = "Lapack" endif if (N_det < N_states_diag) then diag_algorithm = "Lapack" endif END_PROVIDER BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ] implicit none BEGIN_DOC ! N_states lowest eigenvalues of the CI matrix END_DOC integer :: j character*(8) :: st call write_time(output_determinants) do j=1,N_states_diag CI_energy(j) = CI_electronic_energy(j) + nuclear_repulsion write(st,'(I4)') j call write_double(output_determinants,CI_energy(j),'Energy of state '//trim(st)) call write_double(output_determinants,CI_eigenvectors_s2(j),'S^2 of state '//trim(st)) enddo END_PROVIDER BEGIN_PROVIDER [ double precision, CI_electronic_energy, (N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors, (N_det,N_states_diag) ] &BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2, (N_states_diag) ] implicit none BEGIN_DOC ! Eigenvectors/values of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det CI_eigenvectors(i,j) = psi_coef(i,j) enddo enddo if (diag_algorithm == "Davidson") then call davidson_diag(psi_det,CI_eigenvectors,CI_electronic_energy, & size(CI_eigenvectors,1),N_det,N_states_diag,N_int,output_determinants) do j=1,N_states_diag call get_s2_u0(psi_det,CI_eigenvectors(1,j),N_det,size(CI_eigenvectors,1),CI_eigenvectors_s2(j)) enddo else if (diag_algorithm == "Lapack") then double precision, allocatable :: eigenvectors(:,:), eigenvalues(:) allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) allocate (eigenvalues(N_det)) call lapack_diag(eigenvalues,eigenvectors, & H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) CI_electronic_energy(:) = 0.d0 do i=1,N_det CI_eigenvectors(i,1) = eigenvectors(i,1) enddo integer :: i_state double precision :: s2 if (s2_eig) then i_state = 0 do j=1,N_det call get_s2_u0(psi_det,eigenvectors(1,j),N_det,size(eigenvectors,1),s2) print*,'s2 = ',s2 if(dabs(s2-expected_s2).le.0.3d0)then i_state += 1 do i=1,N_det CI_eigenvectors(i,i_state) = eigenvectors(i,j) enddo CI_electronic_energy(i_state) = eigenvalues(j) CI_eigenvectors_s2(i_state) = s2 endif if (i_state.ge.N_states_diag) then exit endif enddo else do j=1,N_states_diag call get_s2_u0(psi_det,eigenvectors(1,j),N_det,N_det,s2) do i=1,N_det CI_eigenvectors(i,j) = eigenvectors(i,j) enddo CI_electronic_energy(j) = eigenvalues(j) CI_eigenvectors_s2(j) = s2 enddo endif deallocate(eigenvectors,eigenvalues) endif END_PROVIDER subroutine diagonalize_CI implicit none BEGIN_DOC ! Replace the coefficients of the CI states by the coefficients of the ! eigenstates of the CI matrix END_DOC integer :: i,j do j=1,N_states_diag do i=1,N_det psi_coef(i,j) = CI_eigenvectors(i,j) enddo enddo SOFT_TOUCH psi_coef CI_electronic_energy CI_energy CI_eigenvectors CI_eigenvectors_s2 end