BEGIN_PROVIDER [ integer, dressed_column_idx, (N_states) ] implicit none BEGIN_DOC ! Index of the dressed columns END_DOC integer :: i double precision :: tmp integer, external :: idamax do i=1,N_states dressed_column_idx(i) = idamax(size(psi_coef,1), psi_coef(1,i), 1) enddo END_PROVIDER subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_diag,Nint,dressing_state) use bitmasks implicit none BEGIN_DOC ! Davidson diagonalization. ! ! dets_in : bitmasks corresponding to determinants ! ! u_in : guess coefficients on the various states. Overwritten ! on exit ! ! dim_in : leftmost dimension of u_in ! ! sze : Number of determinants ! ! N_st : Number of eigenstates ! ! Initial guess vectors are not necessarily orthonormal END_DOC integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) double precision, intent(inout) :: u_in(dim_in,N_st_diag) double precision, intent(out) :: energies(N_st_diag), s2_out(N_st_diag) integer, intent(in) :: dressing_state double precision, allocatable :: H_jj(:), S2_jj(:) double precision, external :: diag_H_mat_elem, diag_S_mat_elem integer :: i ASSERT (N_st > 0) ASSERT (sze > 0) ASSERT (Nint > 0) ASSERT (Nint == N_int) PROVIDE mo_bielec_integrals_in_map allocate(H_jj(sze),S2_jj(sze)) H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint) !$OMP PARALLEL DEFAULT(NONE) & !$OMP SHARED(sze,H_jj, dets_in,Nint) & !$OMP PRIVATE(i) !$OMP DO SCHEDULE(static) do i=2,sze H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint) enddo !$OMP END DO !$OMP END PARALLEL if (dressing_state > 0) then H_jj(dressed_column_idx(dressing_state)) += dressing_column_h(dressed_column_idx(dressing_state),dressing_state) endif call davidson_diag_hjj_sjj(dets_in,u_in,H_jj,S2_out,energies,dim_in,sze,N_st,N_st_diag,Nint,dressing_state) deallocate (H_jj,S2_jj) end subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_st,N_st_diag,Nint,dressing_state) use bitmasks implicit none BEGIN_DOC ! Davidson diagonalization with specific diagonal elements of the H matrix ! ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson ! ! S2_out : Output : s^2 ! ! dets_in : bitmasks corresponding to determinants ! ! u_in : guess coefficients on the various states. Overwritten ! on exit ! ! dim_in : leftmost dimension of u_in ! ! sze : Number of determinants ! ! N_st : Number of eigenstates ! ! N_st_diag : Number of states in which H is diagonalized. Assumed > sze ! ! Initial guess vectors are not necessarily orthonormal END_DOC integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint integer(bit_kind), intent(in) :: dets_in(Nint,2,sze) double precision, intent(in) :: H_jj(sze) integer, intent(in) :: dressing_state double precision, intent(inout) :: s2_out(N_st_diag) double precision, intent(inout) :: u_in(dim_in,N_st_diag) double precision, intent(out) :: energies(N_st_diag) integer :: iter integer :: i,j,k,l,m logical :: converged double precision, external :: u_dot_v, u_dot_u integer :: k_pairs, kl integer :: iter2 double precision, allocatable :: W(:,:), U(:,:), S(:,:), overlap(:,:) double precision, allocatable :: y(:,:), h(:,:), lambda(:), s2(:) double precision, allocatable :: c(:), s_(:,:), s_tmp(:,:) double precision :: diag_h_mat_elem double precision, allocatable :: residual_norm(:) character*(16384) :: write_buffer double precision :: to_print(3,N_st) double precision :: cpu, wall integer :: shift, shift2, itermax, istate double precision :: r1, r2 logical :: state_ok(N_st_diag*davidson_sze_max) include 'constants.include.F' !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, h, lambda if (N_st_diag*3 > sze) then print *, 'error in Davidson :' print *, 'Increase n_det_max_jacobi to ', N_st_diag*3 stop -1 endif itermax = max(3,min(davidson_sze_max, sze/N_st_diag)) PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse call write_time(6) call wall_time(wall) call cpu_time(cpu) write(6,'(A)') '' write(6,'(A)') 'Davidson Diagonalization' write(6,'(A)') '------------------------' write(6,'(A)') '' call write_int(6,N_st,'Number of states') call write_int(6,N_st_diag,'Number of states in diagonalization') call write_int(6,sze,'Number of determinants') r1 = 8.d0*(3.d0*dble(sze*N_st_diag*itermax+5.d0*(N_st_diag*itermax)**2 & + 4.d0*(N_st_diag*itermax)+nproc*(4.d0*N_det_alpha_unique+2.d0*N_st_diag*sze)))/(1024.d0**3) call write_double(6, r1, 'Memory(Gb)') write(6,'(A)') '' write_buffer = '=====' do i=1,N_st write_buffer = trim(write_buffer)//' ================ =========== ===========' enddo write(6,'(A)') write_buffer(1:6+41*N_states) write_buffer = 'Iter' do i=1,N_st write_buffer = trim(write_buffer)//' Energy S^2 Residual ' enddo write(6,'(A)') write_buffer(1:6+41*N_states) write_buffer = '=====' do i=1,N_st write_buffer = trim(write_buffer)//' ================ =========== ===========' enddo write(6,'(A)') write_buffer(1:6+41*N_states) allocate( & ! Large W(sze,N_st_diag*itermax), & U(sze,N_st_diag*itermax), & S(sze,N_st_diag*itermax), & ! Small h(N_st_diag*itermax,N_st_diag*itermax), & y(N_st_diag*itermax,N_st_diag*itermax), & s_(N_st_diag*itermax,N_st_diag*itermax), & s_tmp(N_st_diag*itermax,N_st_diag*itermax), & residual_norm(N_st_diag), & c(N_st_diag*itermax), & s2(N_st_diag*itermax), & overlap(N_st_diag*itermax, N_st_diag*itermax), & lambda(N_st_diag*itermax)) h = 0.d0 U = 0.d0 W = 0.d0 S = 0.d0 y = 0.d0 s_ = 0.d0 s_tmp = 0.d0 ASSERT (N_st > 0) ASSERT (N_st_diag >= N_st) ASSERT (sze > 0) ASSERT (Nint > 0) ASSERT (Nint == N_int) ! Davidson iterations ! =================== converged = .False. do k=N_st+1,N_st_diag u_in(k,k) = 10.d0 do i=1,sze call random_number(r1) call random_number(r2) r1 = dsqrt(-2.d0*dlog(r1)) r2 = dtwo_pi*r2 u_in(i,k) = r1*dcos(r2) enddo enddo do k=1,N_st_diag call normalize(u_in(1,k),sze) enddo do while (.not.converged) do k=1,N_st_diag do i=1,sze U(i,k) = u_in(i,k) enddo enddo do iter=1,itermax-1 shift = N_st_diag*(iter-1) shift2 = N_st_diag*iter call ortho_qr(U,size(U,1),sze,shift2) ! Compute |W_k> = \sum_i |i> ! ----------------------------------------- if ((sze > 100000).and.distributed_davidson) then call H_S2_u_0_nstates_zmq (W(1,shift+1),S(1,shift+1),U(1,shift+1),N_st_diag,sze) else call H_S2_u_0_nstates_openmp(W(1,shift+1),S(1,shift+1),U(1,shift+1),N_st_diag,sze) endif if (dressing_state > 0) then do istate=1,N_st_diag l = dressed_column_idx(dressing_state) do i=1,sze W(i,shift+istate) += dressing_column_h(i,dressing_state) * U(l,shift+istate) S(i,shift+istate) += dressing_column_s(i,dressing_state) * U(l,shift+istate) W(l,shift+istate) += dressing_column_h(i,dressing_state) * U(i,shift+istate) S(l,shift+istate) += dressing_column_s(i,dressing_state) * U(i,shift+istate) enddo W(l,shift+istate) -= dressing_column_h(l,dressing_state) * U(l,shift+istate) S(l,shift+istate) -= dressing_column_s(l,dressing_state) * U(l,shift+istate) enddo endif ! Compute h_kl = = ! ------------------------------------------- call dgemm('T','N', shift2, shift2, sze, & 1.d0, U, size(U,1), W, size(W,1), & 0.d0, h, size(h,1)) call dgemm('T','N', shift2, shift2, sze, & 1.d0, U, size(U,1), S, size(S,1), & 0.d0, s_, size(s_,1)) ! ! Diagonalize S^2 ! ! --------------- ! ! call lapack_diag(s2,y,s_,size(s_,1),shift2) ! ! ! ! Rotate H in the basis of eigenfunctions of s2 ! ! --------------------------------------------- ! ! call dgemm('N','N',shift2,shift2,shift2, & ! 1.d0, h, size(h,1), y, size(y,1), & ! 0.d0, s_tmp, size(s_tmp,1)) ! ! call dgemm('T','N',shift2,shift2,shift2, & ! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), & ! 0.d0, h, size(h,1)) ! ! ! Damp interaction between different spin states ! ! ------------------------------------------------ ! ! do k=1,shift2 ! do l=1,shift2 ! if (dabs(s2(k) - s2(l)) > 1.d0) then ! h(k,l) = h(k,l)*(max(0.d0,1.d0 - dabs(s2(k) - s2(l)))) ! endif ! enddo ! enddo ! ! ! Rotate back H ! ! ------------- ! ! call dgemm('N','T',shift2,shift2,shift2, & ! 1.d0, h, size(h,1), y, size(y,1), & ! 0.d0, s_tmp, size(s_tmp,1)) ! ! call dgemm('N','N',shift2,shift2,shift2, & ! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), & ! 0.d0, h, size(h,1)) ! Diagonalize h ! ------------- call lapack_diag(lambda,y,h,size(h,1),shift2) ! Compute S2 for each eigenvector ! ------------------------------- call dgemm('N','N',shift2,shift2,shift2, & 1.d0, s_, size(s_,1), y, size(y,1), & 0.d0, s_tmp, size(s_tmp,1)) call dgemm('T','N',shift2,shift2,shift2, & 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), & 0.d0, s_, size(s_,1)) do k=1,shift2 s2(k) = s_(k,k) + S_z2_Sz enddo if (s2_eig) then do k=1,shift2 state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0) enddo else do k=1,size(state_ok) state_ok(k) = .True. enddo endif do k=1,shift2 if (.not. state_ok(k)) then do l=k+1,shift2 if (state_ok(l)) then call dswap(shift2, y(1,k), 1, y(1,l), 1) call dswap(1, s2(k), 1, s2(l), 1) call dswap(1, lambda(k), 1, lambda(l), 1) state_ok(k) = .True. state_ok(l) = .False. exit endif enddo endif enddo if (state_following) then integer :: order(N_st_diag) double precision :: cmax overlap = -1.d0 do k=1,shift2 do i=1,shift2 overlap(k,i) = dabs(y(k,i)) enddo enddo do k=1,N_st cmax = -1.d0 do i=1,N_st if (overlap(i,k) > cmax) then cmax = overlap(i,k) order(k) = i endif enddo do i=1,N_st_diag overlap(order(k),i) = -1.d0 enddo enddo overlap = y do k=1,N_st l = order(k) if (k /= l) then y(1:shift2,k) = overlap(1:shift2,l) endif enddo do k=1,N_st overlap(k,1) = lambda(k) overlap(k,2) = s2(k) enddo do k=1,N_st l = order(k) if (k /= l) then lambda(k) = overlap(l,1) s2(k) = overlap(l,2) endif enddo endif ! Express eigenvectors of h in the determinant basis ! -------------------------------------------------- call dgemm('N','N', sze, N_st_diag, shift2, & 1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1)) call dgemm('N','N', sze, N_st_diag, shift2, & 1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1)) call dgemm('N','N', sze, N_st_diag, shift2, & 1.d0, S, size(S,1), y, size(y,1), 0.d0, S(1,shift2+1), size(S,1)) ! Compute residual vector and davidson step ! ----------------------------------------- do k=1,N_st_diag do i=1,sze U(i,shift2+k) = & (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) & * (1.d0 + s2(k) * U(i,shift2+k) - S(i,shift2+k) - S_z2_Sz & )/max(H_jj(i) - lambda (k),1.d-2) enddo if (k <= N_st) then residual_norm(k) = u_dot_u(U(1,shift2+k),sze) to_print(1,k) = lambda(k) + nuclear_repulsion to_print(2,k) = s2(k) to_print(3,k) = residual_norm(k) endif enddo write(6,'(1X,I3,1X,100(1X,F16.10,1X,F11.6,1X,E11.3))') iter, to_print(1:3,1:N_st) call davidson_converged(lambda,residual_norm,wall,iter,cpu,N_st,converged) do k=1,N_st if (residual_norm(k) > 1.e8) then print *, '' stop 'Davidson failed' endif enddo if (converged) then exit endif enddo ! Re-contract to u_in ! ----------- call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, & U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1)) enddo do k=1,N_st_diag energies(k) = lambda(k) s2_out(k) = s2(k) enddo write_buffer = '======' do i=1,N_st write_buffer = trim(write_buffer)//' ================ =========== ===========' enddo write(6,'(A)') trim(write_buffer) write(6,'(A)') '' call write_time(6) deallocate ( & W, residual_norm, & U, overlap, & c, S, & h, & y, s_, s_tmp, & lambda & ) end subroutine u_0_H_u_0(e_0,u_0,n,keys_tmp,Nint,N_st,sze) use bitmasks implicit none BEGIN_DOC ! Computes e_0 = / ! ! n : number of determinants ! END_DOC integer, intent(in) :: n,Nint, N_st, sze double precision, intent(out) :: e_0(N_st) double precision, intent(inout) :: u_0(sze,N_st) integer(bit_kind),intent(in) :: keys_tmp(Nint,2,n) double precision, allocatable :: v_0(:,:), s_0(:,:), u_1(:,:) double precision :: u_dot_u,u_dot_v,diag_H_mat_elem integer :: i,j if ((sze > 100000).and.distributed_davidson) then allocate (v_0(sze,N_states_diag),s_0(sze,N_states_diag), u_1(sze,N_states_diag)) u_1(1:sze,1:N_states) = u_0(1:sze,1:N_states) u_1(1:sze,N_states+1:N_states_diag) = 0.d0 call H_S2_u_0_nstates_zmq(v_0,s_0,u_1,N_states_diag,sze) deallocate(u_1) else allocate (v_0(sze,N_st),s_0(sze,N_st)) call H_S2_u_0_nstates_openmp(v_0,s_0,u_0,N_st,sze) endif double precision :: norm do i=1,N_st norm = u_dot_u(u_0(1,i),n) if (norm /= 0.d0) then e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n) else e_0(i) = 0.d0 endif enddo deallocate (s_0, v_0) end