subroutine pt2_delta_rho_one_point(det_pert,c_pert,e_2_pert,H_pert_diag,Nint,ndet,n_st) use bitmasks implicit none integer, intent(in) :: Nint,ndet,n_st integer(bit_kind), intent(in) :: det_pert(Nint,2) double precision , intent(out) :: c_pert(n_st),e_2_pert(n_st),H_pert_diag(N_st) double precision :: i_O1_psi_array(N_st) double precision :: i_H_psi_array(N_st) BEGIN_DOC ! compute the perturbatibe contribution to the Integrated Spin density at z = z_one point of one determinant ! ! for the various n_st states, at various level of theory. ! ! c_pert(i) = /( - ) ! ! e_2_pert(i) = c_pert(i) * ! ! H_pert_diag(i) = c_pert(i)^2 * ! ! To get the contribution of the first order : ! ! = sum(over i) e_2_pert(i) ! ! To get the contribution of the diagonal elements of the second order : ! ! [ + + sum(over i) H_pert_diag(i) ] / [1. + sum(over i) c_pert(i) **2] ! END_DOC integer :: i,j double precision :: diag_H_mat_elem,diag_o1_mat_elem_alpha_beta integer :: exc(0:2,2,2) integer :: degree double precision :: phase,delta_e,h,oii,diag_o1_mat_elem integer :: h1,h2,p1,p2,s1,s2 ASSERT (Nint == N_int) ASSERT (Nint > 0) ! call get_excitation_degree(HF_bitmask,det_pert,degree,N_int) ! if(degree.gt.degree_max_generators+1)then ! H_pert_diag = 0.d0 ! e_2_pert = 0.d0 ! c_pert = 0.d0 ! return ! endif call i_O1_psi_alpha_beta(mo_integrated_delta_rho_one_point,det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_O1_psi_array) call i_H_psi(det_pert,psi_selectors,psi_selectors_coef,Nint,N_det_selectors,psi_selectors_size,N_st,i_H_psi_array) h = diag_H_mat_elem(det_pert,Nint) oii = diag_O1_mat_elem_alpha_beta(mo_integrated_delta_rho_one_point,det_pert,N_int) do i =1,N_st if(CI_electronic_energy(i)>h.and.CI_electronic_energy(i).ne.0.d0)then c_pert(i) = -1.d0 e_2_pert(i) = selection_criterion*selection_criterion_factor*2.d0 else if (dabs(CI_electronic_energy(i) - h) > 1.d-6) then c_pert(i) = i_H_psi_array(i) / (CI_electronic_energy(i) - h) e_2_pert(i) = c_pert(i) * (i_O1_psi_array(i)+i_O1_psi_array(i) ) + c_pert(i) * c_pert(i) * oii H_pert_diag(i) = c_pert(i) * (i_O1_psi_array(i)+i_O1_psi_array(i) ) else c_pert(i) = -1.d0 e_2_pert(i) = -dabs(i_H_psi_array(i)) H_pert_diag(i) = c_pert(i) * i_O1_psi_array(i) endif enddo end