BEGIN_PROVIDER [integer, degree_max_integration_lebedev] BEGIN_DOC ! integrate correctly a polynom of order "degree_max_integration_lebedev" ! needed for the angular integration according to LEBEDEV formulae END_DOC implicit none degree_max_integration_lebedev= 13 END_PROVIDER BEGIN_PROVIDER [integer, n_points_integration_angular_lebedev] BEGIN_DOC ! Number of points needed for the angular integral END_DOC implicit none if (degree_max_integration_lebedev == 3)then n_points_integration_angular_lebedev = 6 else if (degree_max_integration_lebedev == 5)then n_points_integration_angular_lebedev = 14 else if (degree_max_integration_lebedev == 7)then n_points_integration_angular_lebedev = 26 else if (degree_max_integration_lebedev == 9)then n_points_integration_angular_lebedev = 38 else if (degree_max_integration_lebedev == 11)then n_points_integration_angular_lebedev = 50 else if (degree_max_integration_lebedev == 13)then n_points_integration_angular_lebedev = 74 else if (degree_max_integration_lebedev == 15)then n_points_integration_angular_lebedev = 86 else if (degree_max_integration_lebedev == 17)then n_points_integration_angular_lebedev = 110 else if (degree_max_integration_lebedev == 19)then n_points_integration_angular_lebedev = 146 else if (degree_max_integration_lebedev == 21)then n_points_integration_angular_lebedev = 170 endif END_PROVIDER BEGIN_PROVIDER [double precision, theta_angular_integration_lebedev, (n_points_integration_angular_lebedev)] &BEGIN_PROVIDER [double precision, phi_angular_integration_lebedev, (n_points_integration_angular_lebedev)] &BEGIN_PROVIDER [double precision, weights_angular_integration_lebedev, (n_points_integration_angular_lebedev)] implicit none BEGIN_DOC ! Theta phi values together with the weights values for the angular integration : ! integral [dphi,dtheta] f(x,y,z) = 4 * pi * sum (1