subroutine do_mono_excitation(key_in,i_hole,i_particle,ispin,i_ok) implicit none BEGIN_DOC ! Apply the mono excitation operator : a^{dager}_(i_particle) a_(i_hole) of spin = ispin ! on key_in ! ispin = 1 == alpha ! ispin = 2 == beta ! i_ok = 1 == the excitation is possible ! i_ok = -1 == the excitation is not possible END_DOC integer, intent(in) :: i_hole,i_particle,ispin integer(bit_kind), intent(inout) :: key_in(N_int,2) integer, intent(out) :: i_ok integer :: k,j,i use bitmasks ASSERT (i_hole > 0 ) ASSERT (i_particle <= mo_tot_num) i_ok = 1 ! hole k = ishft(i_hole-1,-bit_kind_shift)+1 j = i_hole-ishft(k-1,bit_kind_shift)-1 key_in(k,ispin) = ibclr(key_in(k,ispin),j) ! particle k = ishft(i_particle-1,-bit_kind_shift)+1 j = i_particle-ishft(k-1,bit_kind_shift)-1 key_in(k,ispin) = ibset(key_in(k,ispin),j) integer :: n_elec_tmp n_elec_tmp = 0 do i = 1, N_int n_elec_tmp += popcnt(key_in(i,1)) + popcnt(key_in(i,2)) enddo if(n_elec_tmp .ne. elec_num)then !print*, n_elec_tmp,elec_num !call debug_det(key_in,N_int) i_ok = -1 endif end subroutine do_spin_flip(key_in,i_flip,ispin,i_ok) implicit none BEGIN_DOC ! flip the spin ispin in the orbital i_flip ! on key_in ! ispin = 1 == alpha ! ispin = 2 == beta ! i_ok = 1 == the flip is possible ! i_ok = -1 == the flip is not possible END_DOC integer, intent(in) :: i_flip,ispin integer(bit_kind), intent(inout) :: key_in(N_int,2) integer, intent(out) :: i_ok integer :: k,j,i integer(bit_kind) :: key_tmp(N_int,2) i_ok = -1 key_tmp = 0_bit_kind k = ishft(i_flip-1,-bit_kind_shift)+1 j = i_flip-ishft(k-1,bit_kind_shift)-1 key_tmp(k,1) = ibset(key_tmp(k,1),j) integer :: other_spin(2) other_spin(1) = 2 other_spin(2) = 1 if(popcnt(iand(key_tmp(k,1),key_in(k,ispin))) == 1 .and. popcnt(iand(key_tmp(k,1),key_in(k,other_spin(ispin)))) == 0 )then ! There is a spin "ispin" in the orbital i_flip AND There is no electron of opposit spin in the same orbital "i_flip" key_in(k,ispin) = ibclr(key_in(k,ispin),j) ! destroy the electron ispin in the orbital i_flip key_in(k,other_spin(ispin)) = ibset(key_in(k,other_spin(ispin)),j) ! create an electron of spin other_spin in the same orbital i_ok = 1 else return endif end logical function is_spin_flip_possible(key_in,i_flip,ispin) implicit none BEGIN_DOC ! returns .True. if the spin-flip of spin ispin in the orbital i_flip is possible ! on key_in END_DOC integer, intent(in) :: i_flip,ispin integer(bit_kind), intent(in) :: key_in(N_int,2) integer :: k,j,i integer(bit_kind) :: key_tmp(N_int,2) is_spin_flip_possible = .False. key_tmp = 0_bit_kind k = ishft(i_flip-1,-bit_kind_shift)+1 j = i_flip-ishft(k-1,bit_kind_shift)-1 key_tmp(k,1) = ibset(key_tmp(k,1),j) integer :: other_spin(2) other_spin(1) = 2 other_spin(2) = 1 if(popcnt(iand(key_tmp(k,1),key_in(k,ispin))) == 1 .and. popcnt(iand(key_tmp(k,1),key_in(k,other_spin(ispin)))) == 0 )then ! There is a spin "ispin" in the orbital i_flip AND There is no electron of opposit spin in the same orbital "i_flip" is_spin_flip_possible = .True. return else return endif end subroutine set_bit_to_integer(i_physical,key,Nint) use bitmasks implicit none integer, intent(in) :: i_physical,Nint integer(bit_kind), intent(inout) :: key(Nint) integer :: k,j,i k = ishft(i_physical-1,-bit_kind_shift)+1 j = i_physical-ishft(k-1,bit_kind_shift)-1 key(k) = ibset(key(k),j) end subroutine clear_bit_to_integer(i_physical,key,Nint) use bitmasks implicit none integer, intent(in) :: i_physical,Nint integer(bit_kind), intent(inout) :: key(Nint) integer :: k,j,i k = ishft(i_physical-1,-bit_kind_shift)+1 j = i_physical-ishft(k-1,bit_kind_shift)-1 key(k) = ibclr(key(k),j) end