subroutine $subroutine_diexc(key_in, hole_1,particl_1, hole_2, particl_2 $parameters ) use omp_lib use bitmasks implicit none $declarations integer(omp_lock_kind) :: lck integer(bit_kind),intent(in) :: key_in(N_int,2) integer(bit_kind),allocatable :: keys_out(:,:,:) double precision, allocatable :: hij_tab(:) integer(bit_kind), intent(in) :: hole_1(N_int,2), particl_1(N_int,2) integer(bit_kind), intent(in) :: hole_2(N_int,2), particl_2(N_int,2) integer(bit_kind) :: hole_save(N_int,2) integer(bit_kind) :: key(N_int,2),hole(N_int,2), particle(N_int,2) integer(bit_kind) :: hole_tmp(N_int,2), particle_tmp(N_int,2) integer :: ii,i,jj,j,k,ispin,l integer :: occ_particle(N_int*bit_kind_size,2) integer :: occ_hole(N_int*bit_kind_size,2) integer :: occ_particle_tmp(N_int*bit_kind_size,2) integer :: occ_hole_tmp(N_int*bit_kind_size,2) integer :: kk,pp,other_spin,key_idx integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) integer,parameter :: size_max = $size_max double precision :: hij_elec, mo_bielec_integral, thresh integer, allocatable :: ia_ja_pairs(:,:,:) double precision :: diag_H_mat_elem, E_ref PROVIDE mo_integrals_map PROVIDE mo_bielec_integrals_in_map $set_i_H_j_threshold $omp_init_lock E_ref = diag_H_mat_elem(key_in,N_int) $initialization $omp_parallel allocate (keys_out(N_int,2,size_max),hij_tab(size_max)) !print*,'key_in !!' !call print_key(key_in) !print*,'hole_1, particl_1' !call print_key(hole_1) !call print_key(particl_1) !print*,'hole_2, particl_2' !call print_key(hole_2) !call print_key(particl_2) !!!! First couple hole particle do j = 1, N_int hole(j,1) = iand(hole_1(j,1),key_in(j,1)) hole(j,2) = iand(hole_1(j,2),key_in(j,2)) particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) enddo call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int) call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int) call bitstring_to_list(hole(1,1),occ_hole(1,1),N_elec_in_key_hole_1(1),N_int) call bitstring_to_list(hole(1,2),occ_hole(1,2),N_elec_in_key_hole_1(2),N_int) allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2)) do ispin=1,2 i=0 do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole i_a = occ_hole(ii,ispin) ASSERT (i_a > 0) ASSERT (i_a <= mo_tot_num) do jj=1,N_elec_in_key_part_1(ispin) !particle j_a = occ_particle(jj,ispin) ASSERT (j_a > 0) ASSERT (j_a <= mo_tot_num) i += 1 ia_ja_pairs(1,i,ispin) = i_a ia_ja_pairs(2,i,ispin) = j_a enddo enddo ia_ja_pairs(1,0,ispin) = i enddo key_idx = 0 integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b integer(bit_kind) :: test(N_int,2) double precision :: accu accu = 0.d0 hij_elec = 0.d0 do ispin=1,2 other_spin = iand(ispin,1)+1 $omp_do do ii=1,ia_ja_pairs(1,0,ispin) i_a = ia_ja_pairs(1,ii,ispin) ASSERT (i_a > 0) ASSERT (i_a <= mo_tot_num) j_a = ia_ja_pairs(2,ii,ispin) ASSERT (j_a > 0) ASSERT (j_a <= mo_tot_num) hole = key_in k = ishft(i_a-1,-bit_kind_shift)+1 j = i_a-ishft(k-1,bit_kind_shift)-1 hole(k,ispin) = ibclr(hole(k,ispin),j) k_a = ishft(j_a-1,-bit_kind_shift)+1 l_a = j_a-ishft(k_a-1,bit_kind_shift)-1 hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) !!!! Second couple hole particle do j = 1, N_int hole_tmp(j,1) = iand(hole_2(j,1),hole(j,1)) hole_tmp(j,2) = iand(hole_2(j,2),hole(j,2)) particle_tmp(j,1) = iand(xor(particl_2(j,1),hole(j,1)),particl_2(j,1)) particle_tmp(j,2) = iand(xor(particl_2(j,2),hole(j,2)),particl_2(j,2)) enddo call bitstring_to_list(particle_tmp(1,1),occ_particle_tmp(1,1),N_elec_in_key_part_2(1),N_int) call bitstring_to_list(particle_tmp(1,2),occ_particle_tmp(1,2),N_elec_in_key_part_2(2),N_int) call bitstring_to_list(hole_tmp (1,1),occ_hole_tmp (1,1),N_elec_in_key_hole_2(1),N_int) call bitstring_to_list(hole_tmp (1,2),occ_hole_tmp (1,2),N_elec_in_key_hole_2(2),N_int) ! hole = a^(+)_j_a(ispin) a_i_a(ispin)|key_in> : mono exc :: orb(i_a,ispin) --> orb(j_a,ispin) hole_save = hole if (ispin == 1) then integer :: jjj do kk = 1,N_elec_in_key_hole_2(other_spin) hole = hole_save i_b = occ_hole_tmp(kk,other_spin) ASSERT (i_b > 0) ASSERT (i_b <= mo_tot_num) k = ishft(i_b-1,-bit_kind_shift)+1 j = i_b-ishft(k-1,bit_kind_shift)-1 hole(k,other_spin) = ibclr(hole(k,other_spin),j) do jjj=1,N_elec_in_key_part_2(other_spin) ! particule j_b = occ_particle_tmp(jjj,other_spin) ASSERT (j_b > 0) ASSERT (j_b <= mo_tot_num) if(dabs( mo_bielec_integral(j_a,j_b,i_a,i_b))=thresh) then key_idx += 1 do k=1,N_int keys_out(k,1,key_idx) = key(k,1) keys_out(k,2,key_idx) = key(k,2) enddo hij_tab(key_idx) = hij_elec ASSERT (key_idx <= size_max) if (key_idx == size_max) then $omp_set_lock $keys_work $omp_unset_lock key_idx = 0 endif endif enddo if (key_idx > ishft(size_max,-5)) then if ($omp_test_lock) then $keys_work $omp_unset_lock key_idx = 0 endif endif enddo endif ! does all the mono excitations of the same spin do kk = 1,N_elec_in_key_hole_2(ispin) i_b = occ_hole_tmp(kk,ispin) ASSERT (i_b > 0) ASSERT (i_b <= mo_tot_num) if (i_b <= i_a.or.i_b == j_a) cycle hole = hole_save k = ishft(i_b-1,-bit_kind_shift)+1 j = i_b-ishft(k-1,bit_kind_shift)-1 hole(k,ispin) = ibclr(hole(k,ispin),j) do jjj=1,N_elec_in_key_part_2(ispin) j_b = occ_particle_tmp(jjj,ispin) ASSERT (j_b > 0) ASSERT (j_b <= mo_tot_num) if (j_b <= j_a) cycle if(dabs( mo_bielec_integral(j_a,j_b,i_b,i_a)) orb(j_b,ispin) call i_H_j(key,key_in,N_int,hij_elec) if(dabs(hij_elec)>=thresh) then key_idx += 1 do k=1,N_int keys_out(k,1,key_idx) = key(k,1) keys_out(k,2,key_idx) = key(k,2) enddo hij_tab(key_idx) = hij_elec ASSERT (key_idx <= size_max) if (key_idx == size_max) then $omp_set_lock $keys_work $omp_unset_lock key_idx = 0 endif endif enddo if (key_idx > ishft(size_max,-5)) then if ($omp_test_lock) then $keys_work $omp_unset_lock key_idx = 0 endif endif enddo! kk enddo ! ii $omp_enddo enddo ! ispin $omp_set_lock $keys_work $omp_unset_lock deallocate (keys_out,hij_tab,ia_ja_pairs) $omp_end_parallel $omp_destroy_lock $finalization end subroutine $subroutine_monoexc(key_in, hole_1,particl_1 $parameters ) use omp_lib use bitmasks implicit none $declarations integer(omp_lock_kind) :: lck integer(bit_kind),intent(in) :: key_in(N_int,2) integer(bit_kind),allocatable :: keys_out(:,:,:) double precision, allocatable :: hij_tab(:) integer(bit_kind), intent(in) :: hole_1(N_int,2), particl_1(N_int,2) integer(bit_kind) :: hole_2(N_int,2), particl_2(N_int,2) integer(bit_kind) :: hole_save(N_int,2) integer(bit_kind) :: key(N_int,2),hole(N_int,2), particle(N_int,2) integer(bit_kind) :: hole_tmp(N_int,2), particle_tmp(N_int,2) integer :: ii,i,jj,j,k,ispin,l integer :: occ_particle(N_int*bit_kind_size,2) integer :: occ_hole(N_int*bit_kind_size,2) integer :: occ_particle_tmp(N_int*bit_kind_size,2) integer :: occ_hole_tmp(N_int*bit_kind_size,2) integer :: kk,pp,other_spin,key_idx integer :: N_elec_in_key_hole_1(2),N_elec_in_key_part_1(2) integer :: N_elec_in_key_hole_2(2),N_elec_in_key_part_2(2) integer,parameter :: size_max = $size_max double precision :: hij_elec, thresh integer, allocatable :: ia_ja_pairs(:,:,:) double precision :: diag_H_mat_elem, E_ref PROVIDE mo_integrals_map PROVIDE mo_bielec_integrals_in_map $set_i_H_j_threshold $omp_init_lock E_ref = diag_H_mat_elem(key_in,N_int) $initialization $omp_parallel allocate (keys_out(N_int,2,size_max),hij_tab(size_max)) !!!! First couple hole particle do j = 1, N_int hole(j,1) = iand(hole_1(j,1),key_in(j,1)) hole(j,2) = iand(hole_1(j,2),key_in(j,2)) particle(j,1) = iand(xor(particl_1(j,1),key_in(j,1)),particl_1(j,1)) particle(j,2) = iand(xor(particl_1(j,2),key_in(j,2)),particl_1(j,2)) enddo call bitstring_to_list(particle(1,1),occ_particle(1,1),N_elec_in_key_part_1(1),N_int) call bitstring_to_list(particle(1,2),occ_particle(1,2),N_elec_in_key_part_1(2),N_int) call bitstring_to_list(hole (1,1),occ_hole (1,1),N_elec_in_key_hole_1(1),N_int) call bitstring_to_list(hole (1,2),occ_hole (1,2),N_elec_in_key_hole_1(2),N_int) allocate (ia_ja_pairs(2,0:(elec_alpha_num)*mo_tot_num,2)) do ispin=1,2 i=0 do ii=N_elec_in_key_hole_1(ispin),1,-1 ! hole i_a = occ_hole(ii,ispin) do jj=1,N_elec_in_key_part_1(ispin) !particule j_a = occ_particle(jj,ispin) i += 1 ia_ja_pairs(1,i,ispin) = i_a ia_ja_pairs(2,i,ispin) = j_a enddo enddo ia_ja_pairs(1,0,ispin) = i enddo key_idx = 0 integer :: i_a,j_a,i_b,j_b,k_a,l_a,k_b,l_b integer(bit_kind) :: test(N_int,2) double precision :: accu accu = 0.d0 hij_elec = 0.d0 do ispin=1,2 other_spin = iand(ispin,1)+1 $omp_do do ii=1,ia_ja_pairs(1,0,ispin) i_a = ia_ja_pairs(1,ii,ispin) j_a = ia_ja_pairs(2,ii,ispin) hole = key_in k = ishft(i_a-1,-bit_kind_shift)+1 j = i_a-ishft(k-1,bit_kind_shift)-1 hole(k,ispin) = ibclr(hole(k,ispin),j) k_a = ishft(j_a-1,-bit_kind_shift)+1 l_a = j_a-ishft(k_a-1,bit_kind_shift)-1 hole(k_a,ispin) = ibset(hole(k_a,ispin),l_a) call i_H_j(hole,key_in,N_int,hij_elec) if(dabs(hij_elec) .ge. thresh)then key_idx += 1 do k=1,N_int keys_out(k,1,key_idx) = hole(k,1) keys_out(k,2,key_idx) = hole(k,2) enddo hij_tab(key_idx) = hij_elec if (key_idx > ishft(size_max,-5)) then if ($omp_test_lock) then $keys_work $omp_unset_lock key_idx = 0 endif endif if (key_idx == size_max) then $omp_set_lock $keys_work $omp_unset_lock key_idx = 0 endif endif enddo ! ii $omp_enddo enddo ! ispin $omp_set_lock $keys_work $omp_unset_lock deallocate (keys_out,hij_tab,ia_ja_pairs) $omp_end_parallel $omp_destroy_lock $finalization end